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The explosive growth of the Internet and the proliferation of
smart cellular phones and handheld wireless devices is widening
an already large gap between Internet clients. Clients vary in their
hardware resources, software sophistication, and quality of con-
nectivity, yet server support for client variation ranges from rela-
tively poor to none at all. In this paper we introduce some design
principles that we believe are fundamental to providing “meaning-
ful” Internet access for the entire range of clients. In particular, we
show how to perform on-demand datatype-specific lossy compres-
sion on semantically typed data, tailoring content to the specific
constraints of the client. We instantiate our design principles in a
proxy architecture that further exploits typed data to enable appli-
cation-level management of scarce network resources. Our proxy
architecture generalizes previous work addressing all three aspects
of client variation by applying well-understood techniques in a
novel way, resulting in quantitatively better end-to-end perfor-
mance, higher quality display output, and new capabilities for low-
end clients.

1  Introduction
The current Internet infrastructure includes an extensive range

and number of clients and servers. Clients vary along many axes,
including screen size, color depth, effective bandwidth, processing
power, and ability to handle specific data encodings, e.g., GIF, Post-
Script, or MPEG. High-volume devices such as smart phones [30]
and smart two-way pagers will soon constitute an increasing frac-
tion of Internet clients, making the variation even more pro-
nounced.

These conditions make it difficult for servers to provide a level
of service that is appropriate for every client. For example, PDA’s
with wireless LAN adapters enjoy reasonable bandwidth but have
low-quality displays. Full-featured laptops may connect to the
Internet via low bandwidth wide-area wireless or wireline modems.
Network computers and set-top boxes may not be able to keep up
with the entire proliferation of data formats found on the Web. 

In this paper we propose three design principles that we believe
are fundamental to enabling meaningful access to Internet content
for a wide range of clients spanning all these areas of variation. We
describe experiments using prototype software as well as a uniform
system architecture embodying these principles. The principal
underlying idea of the architecture is that on-demand distillation
(datatype-specific lossy compression) both increases quality of ser-
vice for the client and reduces end-to-end latency perceived by the
client. By performing on-demand distillation in the network infra-
structure rather than at clients or servers, we achieve a separation of
concerns that confers both technical and economic benefits; by
making it datatype-specific, we enable intelligent management of a
scarce resource—a slow network link—at the application level.

In the remainder of this section we outline our design principles
and the adaptation mechanisms derived from them. Section 2
describes an architecture that instantiates these mechanisms in the
network infrastructure, away from clients or servers. Section 3 pre-
sents quantitative evidence that our approach improves end-to-end
latency for a large number of cases. Section 4 describes the current
implementation status of our architecture and what we have learned
from it so far. Section 5 describes related work in various areas, and
we present our conclusions in Section 6.

1.1  Client Variation
Clients vary along three important dimensions: network, hard-

ware, and software.
Network Variations include the bandwidth, latency, and error

behavior of the network. Much work has been done to
optimize network-level protocols for wireless and similar
media [5]. In contrast, we focus on reducing bandwidth
requirements at the application level. Table 2 shows typical
variations in bandwidth seen today.

Hardware Variations include screen size and resolution,
color or grayscale bit depth, memory, and CPU power. For
example, according to proponents of the Network
Computer, “NC’s will ride the trailing edge of the price/
performance curve, where they can reap the benefits of
plunging prices” [19], which implies that their hardware
capabilities will be more modest than those of a typical
desktop PC. As Table 1 illustrates, physical variation across
current clients spans an order of magnitude.

Software Variations include the application-level data
encodings that a client can handle (e.g., JPEG, PostScript,

Table 1: Physical Variation Among Clients

Table 2: Typical Network Variation

Platform
SPECint92/

Memory
Screen Size Bits/pixel

High-end PC 200/16-48M 1280x1024 24, color

Midrange PC 160/8M 1024x768 16, color

High-end laptop 110/16M 800x600 8, color

Midrange laptop 50/8M 640x480 4, gray

Typical PDA low/2M 320x200 2, gray

Network
Bandwidth 

(bits/s)
Round-Trip 

Time

Local Ethernet 10 M 0.5 - 2.0 ms

ISDN 128 K 10 -20 ms

Wireline Modem 14.4 – 28.8 K
350 ms (PPP 

gateway)

Cellular or CDPD 9.6 - 19.2 K 0.1 - 0.5 s
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nonstandard HTML extensions), and also protocol
extensions such as IP multicast support [12].

Although we expect clients to improve over time, there will
always be older systems still in use that represent relatively obso-
lete clients, and the high end will advance roughly in parallel with
the low end, effectively maintaining a gap between the two. There
will always be a large difference between the very best laptop and
the very best smart phone.

1.2  Design Principles for Adapting to Variation
We have identified three design principles that we believe are

fundamental for addressing client variation most effectively. 
1. Datatype-specific lossy compression mechanisms, which

we introduce as distillation and refinement, can achieve
much better compression than “generic” compressors.
Their intelligent decisions about what information to throw
away are based on the semantic type  of the data. They are
therefore more effective adaptation mechanisms than are
typeless compressors.

2. It is computationally feasible on today’s hardware to per-
form “on the fly” adaptation by computing a desired
representation of a typed object on demand rather than rely-
ing on a set of precomputed representations. Although there
is some latency associated with generating the representa-
tion, the end-to-end latency from the server to the client can
be reduced due to the smaller size of the distilled
representation.

3. There are technical and economic reasons to push complex-
ity away from both clients and servers; therefore, on-
demand distillation and refinement should be done at an
intermediate proxy that has access to substantial computing
resources and is well-connected to the rest of the Internet.

1.3  High-Level Semantic Types Allow Datatype-Specific 
Operations

As we describe in Section 3, we have found that datatype-spe-
cific lossy compression is an effective adaptation mechanism that
can achieved by providing well-defined operations over semanti-
cally typed data. For example, lossy compression of an image
requires discarding color information, high-frequency components,
or pixel resolution. Lossy compression of video can additionally
include frame rate reduction. Less obviously, lossy compression of
formatted text requires discarding some formatting information but
preserving the actual prose. In all cases, the goal is to preserve
information that has the highest semantic value. The user can
always explicitly ask for a higher-quality representation later if she
decides that the data is valuable enough to be worth the additional
latency.

Knowledge about datatypes also allows us to reorder traffic to
minimize perceived latency. If the user is retrieving a technical
paper, prioritizing text content ahead of image content will usually
result in the early delivery of the information with the highest
semantic value. We can only do this if we can first decompose an
object into smaller pieces of different semantic types. 

1.3.1  Datatype-Specific Distillation
We define distillation as highly lossy, datatype-specific com-

pression that preserves most of the semantic content of a data object
while adhering to a particular set of constraints. Table 3 lists the
“axes” of compression corresponding to three important datatypes:
formatted text, images, and video streams. Of course there are lim-
its to how severe a degradation of quality is possible before the
source object becomes unrecognizable, but we have found that

order-of-magnitude size reductions are often possible without sig-
nificantly compromising semantic usefulness.

An object’s semantic type and its encoding are logically inde-
pendent, e.g., PostScript can be used to encode either formatted text
or a picture. Although the abstract technique for distilling a particu-
lar object is a function of the object’s high-level semantic type, the
implementation of the distillation technique requires intimate
knowledge of the encoding. In practice, constraints may be imposed
by specific encodings that admit efficient implementation of spe-
cific operations; for example, in the JPEG [20] image encoding,
scaling the image by a power of 2 is exceptionally inexpensive.
Nonetheless, in general the distillation technique depends on the
data type and not the encoding.

Distillation can be thought of as optimizing the object content
with respect to representation constraints.

1.3.2  Datatype-Specific Refinement
The primary purpose of a distilled object is to allow the user to

evaluate the value of downloading the original, or some part of the
original; for instance, zooming in on a section of a graphic or video
frame, or rendering a particular page containing PostScript text and
figures without having to render the preceding pages. We define
refinement as the process of fetching some part (possibly all) of a
source object at increased quality, possibly the original representa-
tion.

As with distillation, the refinement technique is a function of
the semantic type, and the implementation of the technique requires
intimate knowledge of the encoding. For example, “zooming in” is
a useful operation for all images regardless of encoding, but encod-
ing-specific tools are necessary to extract and magnify the desired
zoom region.

1.4  Distillation and Refinement On Demand
To reap the maximum benefit from distillation and refinement,

a distilled representation must target specific attributes of the client.
It is likely that very few clients will impose exactly the same con-
straints on distillation, especially if the user can decide how much
to constrain each distillation axis.

To provide the best possible service to all clients, we should
compute each desired representation on demand, rather than
attempting to pre-compute a set of representations. Our (non-intui-
tive) observation, resulting from simulations and implementation of
prototypes as described in Section 3, is that distillation time is small
and more than made up for by the resulting reduction in transmis-
sion time over low-bandwidth links. We have successfully imple-
mented useful prototypes that serve clients spanning an order of
magnitude in each area of variation, and we believe our approaches

Table 3: Three important types and the distillation axes
corresponding to each.

Semantic 
type

Some specific 
encodings

Distillation axes or 
quality levels

Image
GIF, JPEG, PPM, 
PostScript figure

Resolution, color 
depth, color palette

Text
Plain, HTML, Post-

Script, PDF

Heavy formatting, 
simple markup, 

plain text

Video
NV, H.261, VQ, 

MPEG

Resolution, frame 
rate, color depth, 
progression limit 
(for progressive 

encodings)
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can be generalized into a common framework, which we discuss in
Section 4.2.

1.5  Pushing Complexity Into the Infrastructure
There is growing sentiment that the next wave of successful

Internet client devices will be inexpensive and simple [19]. On the
other hand, the amount of variation even among existing clients has
led to substantial complexity in servers. Fortunately, we can push
the complexity away from both clients and servers by relocating it
into the network infrastructure. Services such as distillation and
refinement should be provided by a proxy, a source of bountiful
cycles that is well connected to the rest of the Internet. For example,
an Internet Service Provider connection point or wireless basesta-
tion. This arrangement confers technical as well as economic
advantages:
• Servers concentrate on serving high quality content, rather

than having to maintain multiple versions.
• Servers do not pay the costs required to do on-demand

distillation.
• Legacy servers remain unchanged.
• Simple and inexpensive clients can rely on the proxy to

optimize content from servers designed for higher-end
clients.

• Rather than communicating with many servers per session,
the client communicates with a single logical entity, the
proxy. This allows fine control over both endpoints of the
slow network connecting the client to the proxy. In effect, it
allows the client to manage bandwidth at the application
level, just as databases manage memory at the application
level [23].

• Distillation and refinement can be offered as a value-added
service by a service provider. The result is an economic
model favorable to service providers, clients, and servers.

1.6  Existing Approaches to Dealing with Variation
Today’s Internet servers deal poorly with client variation:

• Some servers ignore client variation, but this can prevent or
dissuade lower end clients from accessing the servers’
content.

• Other servers use only the most basic data types and
minimal graphics to reduce bandwidth and client rendering
requirements; sophisticated clients lose their advantages
when accessing these.

• Some servers provide multiple formats for downloading a
document (e.g., abstract-only, text-only, full PostScript), or
multiple versions of a Web page (text-only, moderate
graphics, graphics-intensive). This requires additional
administration at the server and leaves out a wide middle
ground of representations.

• Progressive encodings and the Netscape IMG LOWSRC
extension provide ways of retrieving some content at lower
quality first, and incrementally refining the quality later.
These encodings typically assume that all parts of the
encoded document are equally important, so they cannot
reorder traffic to present the highest-value content first. In
addition, it is often impossible for clients to prevent
subsequent refinements from being delivered after the
initial request, so in effect the bandwidth for the entire

object has already been committed.

2  A Proxy Architecture for On-Demand Distillation
To bring our design observations to bear on today’s Internet, we

propose the proxy architecture in Figure 1. The components are the
proxy, one or more datatype-specific distillers, an optional network
connection monitor, and the application support library.

2.1  Proxy Control Point
A client communicates exclusively with the proxy, a controller

process located logically between the client and the server. In a het-
erogeneous network environment, the proxy should be placed near
the boundary between strong and weak connectivity, e.g., at the
basestation of a wireless mobile network. The proxy’s role is to
retrieve content from Internet servers on the client’s behalf, deter-
mine the high-level types of the various components (e.g., images,
text runs), and determine which distillation engines must be
employed. When the proxy calls a distiller, it passes information
such as the hardware characteristics of the client, acceptable encod-
ings, and available network bandwidth. We envision that communi-
cation between the client and proxy will use a lightweight transport
optimized for slow links, but we offer some support for legacy pro-
tocols as well, as we describe in Section 2.4.

2.2  Datatype-Specific Distillers
The datatype-specific distillers are long-lived processes that are

controlled by proxies and perform distillation and refinement on
behalf of one or more clients. Typically, a distiller will be operating
on a single data object at a time, using the constraint information
supplied by the proxy. For example, if the client has an 8-bit gray-
scale display, the target bandwidth is 9600 bps, and delivery is
desired in 4 seconds, the image distiller must predict how much res-
olution loss is necessary to achieve a final representation size of
37.5Kbits. The distiller must account for the reduction achieved by
converting from indexed color to 8-bit grayscale as well as the effi-
ciency of that target encoding. In Section 4.4 we describe our first
efforts at building distillers that can do this.

Image
PostScript

Audio
Video

distillers

Proxy

NCM

Client App

Server

Figure 1: Basic proxy architecture. The proxy uses the distillers
to optimize the quality of service for the client in real time. The
Network Connection Monitor (NCM) monitors end-to-end
bandwidth and connectivity to the proxy’s client(s) and notifies
the proxy of any changes, which may affect the proxy’s
transcoding decisions. Client applications are linked with an
Application Support library that provides a standard API for
communicating with the proxy, or in the case of unmodified
(proxy unaware) applications, communicate with the proxy via a
“client-side agent”.

low
bandwidth

medium
bandwidth

high bandwidth,
low latency

App Support
Unmodified

App
client-side

agent
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2.3  Network Connection Monitor
There are three methods of determining the characteristics of

the client’s network connection:
1. User advice. Via an appropriate user interface, the user

notifies the proxy of her expected bandwidth.
2. Network profile. The Daedalus project [25,24] is exploring

vertical handoff (VHO): the seamless migration of a client
among heterogeneous wireless networks. VHO allows the
client to always switch to the best-available network, which
often results in an order-of-magnitude bandwidth change. If
the proxy is informed of the VHO, it can activate a new cli-
ent profile corresponding to the average characteristics of
the new network.

3. Automatic. A separate process tracks the values of effec-
tive bandwidth, roundtrip latency, and probability of packet
error, and posts events when some value leaves a “window”
of interest.

Clearly, method (3) is the most difficult to implement but has
the potential to provide the most responsive behavior to the user,
provided the information delivered in the events can be put to good
use. Specific API’s for delivery of such events are described in
[4,36].

Because distilled object representations are generated on
demand in our architecture, and because the distillers are assumed
to be able to optimize to a particular size of the output, our distilla-
tion-based proxy architecture can dynamically react to changing
network conditions. For example, a control panel might allow the
user to specify a maximum allowable end-to-end latency for deliv-
ery of a particular image. The proxy can ask the image distiller to
construct a representation that can be delivered within the desired
time bound, given the current effective bandwidth estimate.

Since the adaptation mechanism is cleanly separated from the
detection of network changes, our architecture can exploit an auto-
mated network connection monitor as an optimization, but will still
deliver improved service without it.

2.4  Client-side Architecture
Rather than dealing directly with transport and data format

issues, we would like the client application to deal with datatypes at
the application level, in whatever encodings it finds convenient, and
to be able to specify distillation and refinement preferences in an
abstract way. One way to do this is via an application support
library that provides an API with suitable abstractions for manipu-
lating data and interacting with the proxy. The application support
library is centered around the process of retrieving distilled docu-
ments, and includes abstractions for asynchronous document deliv-
ery, specifying which data encodings are acceptable to the client,
and affecting the proxy’s distillation decisions by specifying
weighted constraints on the distillation axes. 

Because of the library’s rich API, the task of implementing cli-
ent applications that support our refinement and distillation mecha-
nisms is greatly simplified. Since all communication with the proxy
is handled by the support library, applications automatically reap
the benefits of an efficient, tokenized transport protocol. We
describe a Tcl/Tk [31] implementation of the library in Section 4.3.

Unfortunately, legacy applications must be modified if they are
to take advantage of our support library. Our architecture does sup-
port unmodified legacy applications with the help of an client-side
agent. As shown in Figure 1, the client-side agent is a process that
runs locally on the client device. It communicates with the remote
proxy using the application support library (and therefore benefits
from the library’s high-level abstractions and optimized transport
protocol), but communicates with local applications using whatever
protocols and data formats the applications require, such as HTTP.

From the perspective of legacy applications, the client-side agent is
functionally equivalent to the remote proxy, but in reality acts as a
“protocol filter”, efficiently communicating with the remote proxy
on behalf of the application. There are limits to the flexibility of this
approach; for example, it is awkward to provide a user interface for
refinement in most existing Web browsers. Nonetheless, the client-
side agent mechanism allows legacy applications to reap many of
the benefits of our proxy architecture.

3  Distillation Performance
In this section we describe and evaluate three prototype distill-

ers: images, text, and network video streams. The goal of this sec-
tion is to support our claim that in the majority of cases, end-to-end
latency is reduced by distillation. We do this by demonstrating that
distillation performance on today’s desktop workstations is suffi-
ciently fast that the time to produce a useful distilled object is small
enough to be more than made up for by the savings in transmission
time for the distilled object relative to the original.

3.1  Images
We have implemented an image distiller called gifmunch,

which implements distillation and refinement for GIF [18] images,
and consists largely of source code from the NetPBM Toolkit [33].
As described in Section 4.4, gifmunch makes simple predictions
about the size of its output by measuring the achieved bits per pixel
compression of the original image relative to a “raw” bitmap. Fig-
ure 2 shows the result of running gifmunch on a large color GIF
image of the Berkeley Computer Science Division’s home building,
Soda Hall. The image of Figure 2a measures 320x200 pixels—
about 1/8 the total area of the original 880x610—and uses 16 grays,
making it suitable for display on a low-end notebook computer.
Due to the degradation of quality, the writing on the building is
unreadable, but the user can request a refinement of the subregion
containing the writing, which can then be viewed at full resolution.

Table 4 shows the latencies of distilling a number of GIF
images with three different sets of distillation parameters, and the
resulting size reductions. The measurements were taken on a lightly
loaded SPARCstation 20/71 running Solaris 2.4. The three sets of
distillation parameters were chosen as representative values for
addressing the three categories of variation: size reduction to under
8K bytes, color quantizing to 16 grays, and format conversion to
Macintosh PICT. The table data reveals three effects of interest:

.

Table 4: Distillation latency (seconds of wall clock time) and
new sizes (as percent of original), for three sets of distillation
parameters and four images. Each column is independent, i.e.
the third column gives the results for performing all three
operations of reduction, gray mapping, and format conversion
to PICT. There is an implicit requantization back to the original
color palette in the first column, accounting for its higher times.

Original 
Image 
(GIF)

Reduce to 
<8KB

Reduce, 
+map to 16 

grays

Reduce, 
map, 

+convert to 
PICT

size, 
KB

col-
ors

size 
(%)

time
size 
(%)

time
size 
(%)

time

48 87 15.0 3.27 7.7 2.18 27.3 2.66

153 254 5.0 6.72 1.9 3.26 5.8 3.73

329 215 1.8 6.17 1.0 5.18 2.1 5.70

492 249 1.5 8.31 <1.0 6.25 1.4 6.75
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• More aggressive color quantization actually takes less time
than less aggressive quantization. In the first column, the
number of colors in the distilled representation was chosen
to match the number of colors in the original, e.g., 87 for
the first test image. Note that this usually requires the
distiller to perform color quantization, since scaling down
may introduce a large number of new colors. In the second
column, the number of colors in the distilled representation
was fixed at 8, chosen from a fixed gray palette. For all four
images, the time required to scale and quantize
aggressively was less than the time required to scale and
quantize less aggressively.

• Format conversion may cause image representation to
increase in size, in this case because of PICT’s inefficient
encoding of bitmaps compared to GIF. This shows how
choice of representation impacts bandwidth requirements:
if the distiller is informed that the client requires PICT, it
must “budget” fewer pixels for the distilled representation.

• The additional work of transcoding to PICT adds virtually
no latency to the overall distillation process (compare
columns 2 and 3). Adding this step makes sense, e.g., for a
PDA client such as the Newton, on which PICT is
supported by the native GUI but GIF-to-PICT conversion is
computationally expensive.

Image distillation can be used to address all three areas of client
variation:

Network variation: The graphs in Figure 3 depict end-to-end
client latency for retrieving the original and each of four
distilled versions of a selection of GIF images: the top set
of bars is for a cartoon found on a popular Web page, and
the bottom two sets correspond to the images in the last and
first rows of Table 4. The images were fetched using a
14.4Kb/s modem with standard compression (V.42bis and
MNP-5) through the UC Berkeley PPP gateway, via a
process that runs each image through gifmunch. Each bar is
segmented to show the distillation latency and transmission
latency separately. Clearly, even though distillation adds
latency at the proxy, it can result in greatly reduced end-to-
end latency. This supports design principle #2.

Hardware variation: The “map to 16 grays” operation in
Table 4 is appropriate for PDA-class clients with shallow
grayscale displays. We can identify this operation as an
effective lossy compression technique precisely because we
know we are operating on an image, regardless of the
particular encoding, and the compression achieved is

significantly better than the 2x-4x typically achieved by
“generic” lossless compression (design principle #1).

Software variation: Even though PICT offers less efficient
bitmap encoding than GIF and is not supported by most
servers, conversion to PICT is useful for clients such as the
Newton, where PICT is the only graphic format that can be
rendered efficiently (design principle #3).

3.2  Rich-Text
We have also implemented a rich-text distiller [27], which per-

forms lossy compression of PostScript-encoded text. The distiller
replaces PostScript formatting information with HTML markup
tags or with a custom rich-text format that preserves the position
information of the words. PostScript is an excellent target for a dis-
tiller because of its complexity and verbosity: both rendering and
transmission are potentially resource intensive. Table 5 compares
the features available in each format. Figure 4 shows the advantage
of rich-text over PostScript for screen viewing. 

As with image distillation, PostScript distillation yields advan-
tages in all three categories of client variation:

9.4
4.9

3
2

48

7.6
4.5
3.2
2.3

492

10.3
5.5
3.2
1.9

18.8

0 5 10 15 20 25 30 35 40
Latency (sec)

Distill

Transmit
Cartoon

Soda
Hall

Portrait

Figure 3: End-to-end latency for images with and without
distillation. Each group of bars represents one image with 5
levels of distillation; the top bar represents no distillation at all.
The y-axis number is the distilled size in kilobytes (so the top
bar gives the original size). Note that two of the undistilled
images are off the scale; the Soda Hall image is off by an order
of magnitude.

(KB)

(KB)

(KB)

446

59

Figure 2:  Left (a) is a distilled image of Soda Hall, and
above (b) illustrates refinement. (a) occupies 17K
bytes at 320x200 pixels in 16 grays, compared with
492K bytes, 880x600 pixels and 249 colors in the
original (not shown). The refinement (b) of the circled
area occupies 12K bytes (using 16 grays). Distillation
took about 6 seconds and refinement less than 1
second on a lightly loaded SPARCstation 20/71.
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Network Variation: First, distillation greatly reduces the
required bandwidth and thus the end-to-end latency, as
shown in Table 6. We achieved an average size reduction of
5x when going from compressed PostScript to compressed
HTML. Second, the pages of a PostScript document are
pipelined through the distiller, so that the second page is
distilled while the user views the first page. In practice,
users only experience the latency of the first page, so the

Figure 4: Screen snapshots of our rich-text (top) versus
ghostview (bottom). The rich-text is easier to read because it
uses screen fonts.

Table 5: Features for PostScript Distillation

Feature HTML
Rich
Text

Post-
Script

Different Fonts Y Y Y

Bold and Italics Y Y Y

Preserves Font Size Headings Y Y

Preserves Paragraphs Y Y Y

Preserves Layout N Y Y

Handles Equations N some Y

Preserves Tables N Y Y

Preserves Graphics N N Y

Table 6: PostScript Distillation Comparison. The size
percentages are the geometric mean over the five files listed in
Figure 5.

Metric HTML
Rich-
Text

Post-
Script

Percent Size 18.3% 52.0% 100%

Percent Size after 
Gzip compression

5.8% 15.4% 26.3%

difference in perceived latency is about 8x for a 28.8K
modem, as shown in Figure 5. Distillation typically took
about 5 seconds for the first page and about 2 seconds for
subsequent pages.

Hardware Variation: Distillation reduces decoding time by
delivering data in an easy-to-parse format, and results in
better looking documents on clients with lower quality
displays.

Software Variation: PostScript distillation allows clients that
do not directly support PostScript, such as Macintoshes or
PDA devices, to view these documents in HTML or our
rich-text format. The rich-text viewer could be an external
viewer similar to ghostscript, a module for a Java-capable
browser, or a browser plug-in rendering module.

The PostScript distiller will support two kinds of refinement.
First, users can request a particular page at higher quality. Second,
if the users are in rich-text mode (which preserves layout), they can
refine a region by marking it with a rectangle. This is particularly
useful for viewing figures and equations; the rich-text format tends
to have blank regions where the figures go, so it is easy to know
what to refine.

Overall, rich-text distillation reduces end-to-end latency, results
in more readable presentation, and adds new abilities to low-end
clients, such as PostScript viewing. The latency for the appearance
of the first page was reduced an average of 8x using the proxy and
PostScript distiller. Both HTML and our rich-text format are signif-
icantly easier to read on screen than rendered PostScript, although
they sacrifice some layout and graphics accuracy compared to the
original PostScript.

3.3  Real-time Video Streams
Distillation of real-time traffic introduces an additional degree

of freedom with respect to non-real-time traffic types, namely, the
temporal dimension. This affects the distillation process of real-
time traffic in two ways. First, it allows the distiller to perform dis-
tillation in this dimension (commonly called temporal decimation),
such as limiting the frame rate to meet a target bit rate. Second,
temporal dependencies impose tight timing constraints on the distil-
lation process, which affects the architecture of the distiller.

In the spatial domain, we can still perform operations similar to
those used in the image distiller: resolution scaling, requantization,

w/ proxy

RemoteQ.ps
w/ proxy

RFC1641.ps
w/ proxy

RFC1521.ps
w/ proxy

RFC1129.ps
w/ proxy

Adaptive.ps

0

20 40 60 80 10
0

12
0

14
0

16
0

18
0

Latency (sec)

Distill

Transmit

Figure 5: Comparison of end-to-end latency for the first page,
with and without a proxy. Source files are uncompressed
PostScript; distilled files are uncompressed HTML. The
geometric mean of the speedups is 8.1x. (SparcStation20 proxy,
PowerPC Macintosh client, 28.8K modem)

318
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color decimation, or recoding in a format that is more compressible
or better matches the characteristics of the end client.

As with all distillation operations, a central challenge in the dis-
tillation process is to optimize the perceptual quality of the result-
ing stream as a function of the possible distillation operations and
external timing constraints. The video distiller follows the model of
pushing complexity away from the client and trading bandwidth for
quality. The additional challenge introduced in the real-time case is
that temporal efficiency (the analogue of reducing end-to-end
latency for non-real-time distillers) is not an optimization, but a
requirement.

The video stream distiller used in our architecture is the video
gateway, vgw. Figure 6 presents a high level schematic of its design.
At the core of the gateway we have a distiller that can transcode
between arbitrary input and output formats. The gateway controls
the output rate of the resulting stream by applying any of the above
mentioned techniques. Section 4.5 gives some implementation
details; for a complete description, the reader is referred to [2]. Fig-
ure 7 illustrates the relationship between the output frame rate and
output quality, as measured by the peak signal-to-noise ration
(PSNR) of the resulting frames. The figure plots several sizes of
images at a given bit-rate, showing a four way trade-off between
quality, frame-rate, spatial decimation, and bit-rate.

Although vgw’s distillation techniques are different from those
of the image and rich text distillers, they clearly address the three
areas of client variation:

Network Variation: By throttling the frame rate, we can meet
any target bit rate. We can also affect the output bit rate by
altering encoding parameters such as quantization factors.

Hardware Variation: Since vgw can decode the incoming
video stream to pixel domain, its output encoding can be
tailored to meet client screen limitations. For example, vgw
can provide halftoned output to a device with an 8-bit
grayscale display, trading off compression performance for
rendering complexity. Vgw can also accommodate devices
with high bandwidth but limited CPU rendering speed by
throttling the frame rate.

Software Variation: Vgw converts among NV, MJPEG,
H.261, and an error-tolerant form of VQ used by the
Berkeley InfoPad [8], and it appears to clients as a video
source. This enables the InfoPad to participate in MBONE
broadcasts, even though it employs a proprietary video
format, and it does not support IP multicast. Thus several

JPEG
Decoder

H.261
Decoder

NV
Decoder

MPEG
Encoder

H.261
Encoder

VQ
Encoder

Transcoder

Figure 6: The design of the video distiller. Any of several
supported input formats can be converted into any supported
output format. As an example, the figure shows a JPEG/H.261
configuration. The intermediate stage performs a
transformation on the output of the decoder when necessary, to
match the conventions of the decoder and encoder and hands
it to the appropriate encoder. In addition to any bandwidth
reduction inherent in format conversion, the output can be rate-
controlled by decoupling the generation of output frames from
the arrival of input frames.

aspects of software variation are addressed without
modifying or even notifying the server.

We are also adding refinement capabilities to vgw. In particular,
clients will be able to zoom into a part of a stream and view that
subset at higher quality. We can also dynamically control the trade-
off among frame rate, color depth and resolution. For example,
when the content is relatively static, such as overhead slides, we can
reduce the frame rate and increase the resolution. As with images
and rich-text, these techniques exploit datatype-specific knowledge
to maximize the semantic content of the stream for each client, and
enable video delivery to clients for which it would otherwise be
impossible.

3.4  Scalability Concerns
The previous sections have demonstrated that modern worksta-

tions are sufficiently fast that distillation time is often small com-
pared to time saved in transmission of a distilled object. In our
architecture, multiple distillation operations can be serviced in par-
allel by a single pool of computing resources [3] on behalf of a
potentially large set of clients.

To explore how well our architecture scales to large numbers of
clients, we simulated the load placed on a WWW proxy by a
parameterizable number of users. For the purposes of this simula-
tion, our web proxy was modeled as a single 80-MHz HP PA-RISC
workstation that serviced all image distillation requests but was oth-
erwise unloaded. The simulator used performance characteristics of
our image distiller (as measured on the same workstation) to model
the distillation latency perceived by the user as a function of the
image size and the number of simultaneous image distillations cur-

Figure 7: Four-way trade-off among frame rate, quality (PSNR),
frame size, and bandwidth. This data is for H.261 encoding to 8-
bit grayscale, and assumes there is no temporal compression,
such as conditional replenishment. Color frame rate would be
about 1.5x slower (using 4:1:1 YUV). 

Table 7: vgw performance on low- and high-motion streams, on
a SPARCstation 20/71 with Solaris 2.4. Conversion is 320x240
to 352x288. High motion Nv to H.261 transcoding is constrained
by the Nv encoder output rate in our experiment.
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rently in progress on the same machine. Input to the simulator came
from the UC Berkeley Computer Science Division’s HTTPd logs.

Image distillation is a CPU-bound task, since the process of
image reduction and requantization requires a distiller to “touch”
all of the pixels in an image many times. We observed that the
latency of distillation was a linearly increasing function of the num-
ber of simultaneous operations, with a slope approximately propor-
tional to the size of the original GIF (in bytes). Because N distillers
shared the workstation’s CPU equally, each distillation operation
took N times as long to complete.

Recent work [32,11] strongly suggests that access to WWW
documents is bursty. For example, an access to a new page causes a
flurry of distillation operations. Since a user tends to digest the doc-
ument for a period of time before moving on, there are variable-
length periods of inactivity between distillations performed on
behalf of that user. Burstiness results in good utilization of our com-
pute resources, as the bursts of activity from multiple users tend to
not overlap, as long as the compute server is not overloaded. Figure
8a shows an example of bursty distillation activity generated by a
single user from our HTTPd logs; black represents many distilla-
tions occurring concurrently and white represents inactivity.

Adding more users to a proxy increases the “blackness” of the
figure. If two distillation bursts collide, each will take twice as long
to complete; this greatly increases the probability of further coinci-
dent bursts if more users are added. As the number of users
increases, the black regions in the figure tend to smear out and
merge (Figure 8b and c), until finally the entire figure is uniform
black (Figure 8d). At this point, the proxy becomes overloaded, and
distillation requests arrive faster than they can be serviced.

Figure 9 shows the simulated average latency of image distilla-
tion perceived by a user as a function of the number of users sup-
ported by a single workstation, on a logarithmic scale. At
approximately 20 users, requests arrive faster than they are ser-
viced, and beyond this point, distillation latency is unbounded for
the single workstation. Nonetheless, this result suggests that even
using today’s desktop hardware, document access patterns (at least

(a) 1 user

(c) 20 users (d) 24 users

Figure 8:  Each square represents the utilization of the proxy
over time for a different number of simultaneous users. Time
flows vertically up a column and then up its neighboring column.
Each column represents 15 seconds; the entire figure
represents 4500 seconds of activity. Black vertical stripes imply
that clients are waiting for the distiller. At 16 users the proxy
works reasonably well, while at 24 users the system is
unusable.

(b) 16 users

for the Web) allow multiple users to be served by one compute
server in a proxy installation. We have begun investigating how to
balance a distillation workload across multiple distillation “servers”
in a network of workstations.

4  Implementation and Experience To Date
In this section we describe our experiences to date in imple-

menting various pieces of our architecture, what lessons we have
already learned along the way, and what we see as areas of continu-
ing work.

4.1  Pythia HTTP Proxy
We began with a distillation World Wide Web proxy, which we

reported on in [14]. It demonstrated the feasibility of our design
principles, and is useful despite the fact that much of the code is
naive. Pythia is minimally scalable in that it can exploit a small
additional number of workstations to share the distillation work-
load.

4.2  GloMop: A Modular Proxy
We have partially implemented a modular proxy server called

GloMop1, which implements the API alluded to in Section 2.4. Glo-
Mop’s document abstraction is a partially ordered collection of
chunks, each of which consists entirely of a single datatype and
encoding. For example, a Web page is a document typically consist-
ing of one or more text/html and image/* chunks. The modular
proxy can convert each semantic type (only text and images so far)
to a common intermediate representation (a subset of HTML for
text, and PPM [33] for images), distill the intermediate representa-
tion, and convert it to a different target representation for the client
if desired.

Distillation of images adheres to user-specified constraints to
the extent they are supported by our image muncher (Section 4.4).
GloMop is modular in that the document-centric framework makes
it easy to add new transcoding modules and new “client profiles”
describing specific hardware properties (e.g., screen size, aspect
ratio, color palette) of client devices. 

GloMop is also designed to be scalable to large numbers of
users by exploiting the observations that we reported in Section 3.4.
The actual work of distillation can be off-loaded to other nodes in a
network of workstations [3]. We are actively investigating how to
do load balancing for such a system. GloMop also provides authen-
tication and secure channels using Charon, a lightweight indirect
authentication protocol based on Kerberos IV. In [15] we show that
Charon requires little trust to be surrendered to the proxy and is
amenable to implementation even on very small PDA-class devices.

1: From Global Mobile Computing By Proxy.

Figure 9: Image distillation latency versus the number of
simultaneous users on one proxy.
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4.3  Client-side Implementation
We have implemented a client-side application support library

in C, on top of which is layered language-specific “glue” to the pro-
gramming environment of your choice (currently Tcl/Tk, via a shell
called gmwish). We are using gmwish as a research testbed for
exploring the effectiveness of our API, and for testing the imple-
mentation and performance of our core C library and modular
proxy. To this end, we have implemented an image browser applica-
tion that can retrieve and refine WWW images. We chose this appli-
cation because it was easy to implement using Tk, and because it
exercises the entire proxy API. The major functions provided by the
API include requesting document delivery, providing asynchronous
notification of document arrival, specifying which data encodings
are acceptable to the client, and indirectly controlling distillation by
specifying weighted constraints on the distillation axes.

It is difficult to design an effective user interface for controlling
many semantically orthogonal distillation axes. In our image
browser, the user can specify a desired exact value for any one of
the download time, resolution of the image, and color depth of the
image, and specify the relative importance of the remaining two.
However, the conversion of these constraints to distillation parame-
ters at the proxy is not as complete as it should be, and we expect
this characterization to lead to significant future work.

Perhaps unsurprisingly, we observed that asynchronous data
delivery is the largest source of complexity in the library and in
applications that use it. For extremely impoverished clients, the
implementation overhead of this complexity is likely to outweigh
the benefits of asynchronous delivery notification. We are designing
a lightweight version of the application support library that has the
smallest useful subset of the full functionality for small clients.

4.4  Image Distiller
The image distiller we use is constructed largely from source

code in NetPBM [33]. Currently the distiller picks a color palette
based on the known capabilities of the client (which identifies itself
when it first connects to the proxy and establishes a session), and
optimizes for a particular target size in bytes of the distilled repre-
sentation by predicting compression. Prediction is done by observ-
ing the expansion when converting the original image to the PPM
intermediate form, and multiplying this by an encoding-specific
“expansion ratio” based on the effective bits per pixel achieved in
past runs using the same target encoding. The distiller is typically
able to meet this output constraint within a margin of about 10-
15%.

There are several motivations for choosing output representa-
tion size as the optimization target, including targeting a particular
latency bound based on known network bandwidth or observing a
maximum buffer size in the client (the latter is particularly impor-
tant for PDA’s). In practice, however, the user might want to opti-
mize for a different constraint, e.g., sacrificing color to achieve
better resolution while maintaining a roughly constant representa-
tion size. We recognize that in general, mapping a set of weighted
constraints to a set of input parameters for a distiller is a nontrivial
optimization problem. Our goal is to provide a general self-training
mechanism, whereby a statistical model of the distillation process
could be used to predict achieved compression or latency of per-
forming the distillation, given a particular input document and set
of distillation parameters. We do not currently have such a general
mechanism, but it is a major subject of continuing work. We are
exploring both automated statistical modeling [7] and neural net-
works as tools for tackling this problem.

4.5  vgw Video Stream Distiller
As initially described in Section 3.3, the basic vgw model

involves transcoding from some set of supported input formats to a

(possibly different) set of output formats. Each input format is han-
dled by a module that decodes the incoming bit stream into an inter-
mediate representation, which is transformed and delivered to an
encoder that produces a new bit stream in a potentially new format.
Vgw joins two separate stateless real-time protocol (RTP) sessions
and properly transforms the RTP data and control streams.

Requiring every transcoder configuration to decompress all the
way to the pixel domain, and then re-encode the stream from
scratch, would impose a large performance penalty. Instead, multi-
ple intermediate formats are allowed. The choice of intermediate
format is a function of the encoder/decoder pair, determined by the
lowest complexity decoder/encoder data path. In this way, encoder/
decoder pairs can optimize their interaction by choosing an appro-
priate intermediate format. For example, DCT-based coding
schemes like JPEG [20] and H.261 [35] can be more efficiently
transcoded using DCT coefficients, which avoids the slow conver-
sion to the pixel domain.

The intermediate format also allows us to perform transforma-
tions on the canonical image data, such as temporal and spatial dec-
imation and frame geometry conversion (e.g., to handle different
resolutions) and color decimation conversion (to handle different
chrominance plane downsampling schemes).

Vgw has been in service in “production mode” at CERN, as
their transatlantic MBONE gateway. It is also in use by the Berke-
ley InfoPad [8], transcoding MBONE video to InfoPad VQ format,
thus allowing the MBONE video broadcasts to be viewed on the
InfoPad.

4.6  Other Applications
The proxy architecture may be appealing for service providers

that would like to enable their subscribers to use low-cost clients. It
has been said that “…the ultimate fate of Network Computers may
depend on the adoption rate of technologies such as... ATM and
cable data modems” [19]. A “proxied” NC architecture mitigates
this limitation, however, since the existing telephone and wireless
infrastructure can be used to provide much better service via a
proxy than could be obtained from the “raw” network.

Because the proxy architecture is designed to address the limi-
tations of an extremely wide range of clients, it is a good candidate
for a system to deliver Internet content via cable TV converter
boxes, even if those clients enjoy connectivity at cable-modem
speeds. The appeal of Internet-from-your-TV will be significant if
the client computer can be integrated into the cable converter box,
which cable subscribers do not need to purchase. This design
requirement leads to severe hardware and software constraints,
which our proxy architecture is uniquely positioned to address. We
are working with Wink Communications, Inc. [38] to build and
deploy such a system, allowing users of properly equipped cable
converter boxes to access Internet content using their TV and
remote control.

5  Related Work
None of the techniques discussed in this paper is fundamentally

new on its own. We view our contribution as the generalization of
existing techniques into a uniform architecture, in which distillation
on demand is used is used to adapt to ever-increasing client vari-
ability along three distinct axes, all in a medium still undergoing
explosive growth. In this section we discuss work in the three areas
our architecture spans: content transcoding, adapting to poor net-
works, and shifting application complexity away from small clients.

5.1  Transcoding Proxies
The idea of placing an intermediary between a client and a

server is not new. The original HTTP specification [6] explicitly
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provides a proxy mechanism. Though it was originally intended for
users behind security firewalls, it has been put to a number of novel
uses, including Kanji format transcoding [34], Kanji-to-GIF con-
version [39], and rendering equations from markup [40]. The Dis-
tributed Clients Project [13] is also exploiting application-level
stream transducers [9] as one of several mechanisms for facilitating
Web browsing with intermittent connectivity.

5.2  Shielding Clients From Effects of Slow Networks
On-the-fly compression, especially for protocol metadata at the

network level, has long been used to mitigate the effects of slow
networks [21,16]. Various network- and transport-level optimiza-
tions have also been used to address the wireless case [5], which
has propagation and error characteristics quite different from those
of most wired networks.

The Odyssey system [29], on the other hand, supports a form of
end-to-end bandwidth management by providing a fixed number of
representations of data objects on a server, and specifying an API
by which clients track their “environment” (including, e.g., network
characteristics) and negotiate for a representation that is appropriate
for their current connectivity. The approach as described requires
substantial changes (content, filesystem organization, control logic,
and kernel modifications) to the server, and does not accommodate
clients whose configurations suggest a data representation some-
where in between those available at the server. Nonetheless, a distil-
lation proxy could negotiate with an Odyssey server for a
representation that would minimize the additional work the proxy
would need to do on behalf of its client.

5.3  Hybrid Network- and Application-Level Approaches
We know of at least two projects that combine network-level

optimizations with at least some application-level content filtering.
MOWGLI [26] provides both a proxy and a client-side agent, which
cooperate to manage the wireless link using an efficient datagram
protocol, hide disconnection from higher network layers, and
tokenize application level protocols and data formats such as HTTP
and HTML to reduce bandwidth requirements. However,
MOWGLI’s protocol-level lossless compression stands in contrast
to our document model’s semantic lossy compression, and
MOWGLI cannot dynamically adapt its behavior to changing net-
work conditions.

Bruce Zenel’s “dual proxy” architecture [41] also features sepa-
rate low-level and high-level filters, which can be demand-loaded
by applications. The low-level filters operate at the socket API level
and require modifications to the mobile device’s network stack. The
high-level filters can use application-specific semantics to filter data
before it is sent to a client, but the filter is part of the application
rather than a middleware component, which complicates its reuse
by other applications and makes it awkward to support legacy
applications.

5.4  Partitioning of Application Complexity
Rover [22] provides a rich distributed-object system that gives a

uniform view of objects at the OS level, and a queued RPC system
that provides the substrate for invoking on objects. Together these
abstractions allow disconnection and object migration (including
code) to be handled largely implicitly by the OS. For example, sim-
ple GUI code can be migrated to the mobile, where it will use
queued RPC to communicate with the rest of the application run-
ning on a server. Rover’s goals and functionality are complemen-
tary to our own, and nothing precludes the composition of queued
RPC and RDO’s with the functionality of our proxy architecture.

Wit [36] partitions mobile applications between a client run-
ning threaded Tcl on an HP palmtop, and a workstation-based
proxy process. However, Wit 1 did not emphasize bandwidth man-

agement (though nothing in the Wit architecture precludes its use
on a per-application basis), nor did it specify a uniform architecture
for application partitioning. Wit version 2 [37] adds a uniform
architecture in which client data is treated as a graph of objects con-
structed by the proxy, where graph edges connect “related” data
objects (e.g., sequential or threaded messages in a mail queue).
Bandwidth management can be achieved by explicitly pruning the
graph, e.g., lazily fetching subsequent messages in a mail thread,
rather than prefetching them in the initial communication with the
proxy. 

5.5  Cooperative Caching and Prefetching
Cooperative caching relays [17,28,1,10] and prefetching can

reduce the latency seen by the client and server-to-cache bandwidth
requirements, but do not address cache-to-client bandwidth (e.g.,
the client is connected to the caching relay via a slow link) or client
hardware/software variation. We believe that distributed coopera-
tive caching will ultimately be necessary for managing the explo-
sive growth of the Internet, but not for reducing overall latency and
bandwidth to the client. The proxy does, however, provides a natu-
ral location for cooperative caching of distilled and undistilled data,
exploiting locality among a group of institutional users connected
to the same proxy.

6  Conclusions
High client variability is an area of increasing concern that

existing servers do not handle well. We have proposed three design
principles we believe to be fundamental to addressing variation:
• Datatype-specific distillation and refinement achieve better

compression than does lossless compression while
retaining useful semantic content, and allow network
resources to be managed at the application level.

• On-demand distillation and refinement reduce end-to-end
latency perceived by the client and are more flexible than
reliance on precomputed static representations.

• Performing distillation and refinement in the network
infrastructure rather than at the endpoints separates
technical as well as economic concerns of clients and
servers.

We have also described a proxy architecture based on these
design principles that has the ability to adapt dynamically to chang-
ing network conditions. Our architecture provides a generalized
framework for simultaneously addressing three independent cate-
gories of client variation by applying well-understood techniques in
a novel way. 

Our preliminary results, based on both implemented prototypes
and trace-driven simulations, confirm the efficacy of our approach.
In particular, on-demand distillation leads to better performance,
often including an order of magnitude latency reduction, better
looking output (targeted to the particular client screen), and new
abilities such as video access or PostScript viewing for low-end
devices.

As new and varied Internet clients become available in volume,
we expect that value-added proxy services based on this architec-
ture will play an increasingly important role in the network infra-
structure.
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