
1

Orthogonal Extensions to the WWW User Interface
Using Client-Side Technologies.

Armando Fox, Steven D. Gribble, Yatin Chawathe, Anthony S. Polito,
Andrew Huang, Benjamin Ling, and Eric A. Brewer

1 The World-W ide Web as a Universal User Interface
Our work is motivated by three trends. First, the ubiquitous

migration of services to the World Wide Web is due in part to its
simple, consistent, and now universal user interface: navigation
by following links and filling out HTML forms are interactions
familiar to even novice Internet users. Second, client-side exten-
sion technologies such as Java and JavaScript allow sites to
extend and “personalize” the behaviors and interfaces of their
services, with portable user-interface elements that integrate
transparently into the browser’s existing interface.

Finally, there has been a recent surge of interest inproxy-
mediated access to the Web, in which proxy agents in the net-
work infrastructure provide caching [1], anonymize user requests
[2], or accelerate Web access via datatype-specific lossy com-
pression [3, 4, 5]. Recent results show that these services can be
built scalably and cost-effectively, and can shield the user from
the limitations of their Internet connections or client platforms.
Not surprisingly, the services have become increasingly powerful
and therefore parameterizable and customizable by each user,
resulting in increased attention on the design and implementation
of the user interface by which the service can be controlled [8]

Figure 1: A Proxied Web Architecture

2 Orthogonal Extensions to the Web’s UI
We describe our experience implementingorthogonal exten-

sions to the existing WWW user interface, to support user control
of intelligent services. Our extensions are orthogonal in that they
provide an interface to aservice, which complements the Web
browsing experience but is independent of the content of any par-
ticular site. We base our experiments on the TranSend service at
UC Berkeley, which performs lossy compression on inline
images to accelerate dialup Web access for a community of
25,000 subscribers. The service keeps a separate “preferences
profile” for each user, which allows each user to vary the aggres-
siveness of lossy compression, selectively turn off the service for
certain pages, and select the type of interface provided forrefine-
ment of degraded (lossily compressed) content.

We are exploring three technologies for implementing the
TranSend service interface: HTML decoration, Java, and JavaS-

Server

Client
Browser

Client
Browser

Proxy
Server

Server

cript. The accompanying video demonstrates prototypes of all
three mechanisms.

We now briefly describe each approach.

2.1 HTML Decoration
Most previous attempts to provide such an orthogonal service

interface have relied onHTML decoration, i.e., inserting ele-
ments into the original HTML on the fly before passing the
HTML to the client. (Various Web sites [6] similarly usedynamic
HTML to vary the site’s page composition, to exploit browser-
specific features such as frames and imagemaps.) Our earliest
efforts to provide an interface to TranSend were based on HTML
decoration. In particular:

• We insert HTML links alongside each (lossily
compressed) inline image. Following such arefinement
link causes the original image to be retrieved.

• We insert a distinctive TranSend icon at the top of each
visited page. The icon serves to remind the user that she is
viewing a page filtered through the TranSend service.
Also, clicking on the icon takes the user to acontrol panel
where she can enable and disable the service and vary the
aggressiveness of distillation. The control panel is just an
HTML form with appropriate controls for each setting.

2.2 Java Dashboard
Our second prototype interface replaces the TranSend icon

with a dashboard similar to those found in desktop applications.
Currently the dashboard allows access to all of the same settings
as the HTML form. TranSend inserts HTML elements neces-
sary to display the dashboard, which is a Java applet, at the top of
each visited page. If the user finds the dashboard visually obtru-
sive, it can be “minimized” into an icon and maximized again
later if the user wishes to change settings.

Figure 2: Elements of the HTML form interface for
controlling the proxy distillation aggressiveness and the
HTML decorations inserted on each page.

2

2.3 JavaScript
Both of the above mechanisms suffer from a clumsy interface

for image refinement: when the user clicks a refinement link
(added to the HTML), the original image appears on its own
blank page. We turned to JavaScript to remedy this problem:

• We annotate each visited page with a short JavaScript
program which, when activated, causes each of the inline
images on the page to be reloadedin place and replaced
with the original versions;

• We add an additional icon labeled “Refine All” to the top
of each page, which activates the JavaScript program.

3 Technical Issues
We encountered a number of interesting challenges in the

implementation of these interfaces, for example:

• If users disable TranSend (i.e. turn off proxies) and attempt
to view client-cached pages, the HTML decorations will
no longer work. This is a specific instance of a general
class of problems already experienced by caching proxies.

• Because our SGML scanner is less tolerant of ill-formed
HTML than most commercial browsers, we occasionally
introduce HTML elements that change the behavior or
appearance of the page significantly.

• Keeping client-side state (e.g. which quality-level button
appears selected in the dashboard) consistent with service-
side state (how aggressively to compress) is awkward with
the stateless HTTP protocol, which has no notion of
“session state”.

In addition, some users may refuse to enable Java or JavaS-
cript because of the associated security risks [7], or may not have
browsers that support these languages (JavaScript in particular is
a moving target).

4 User Interface Discussion

As systems researchers, the more interesting (and less
expected) challenges were user-interface challenges. Some of the
ones that generated the most discussion included:

• “Collisions” with browsers’ built-in UI: Java and
JavaScript do not recognize “nonstandard” mouse events
such as “shift-click” or “right-button click”. JavaScript in
particular leaves no option but to overload the left-click
behavior, limiting the extent to which it may be used to
extend the client interface.

• HTML decoration may adversely affect pages with precise
pixel-level layout, fixed-size non-scrollable frame areas,
etc. Doing the “Right Thing” for every page would
basically require reproduction of the browser’s rendering
behavior at the service. Although we are trying to decrease
our reliance on HTML decoration, we expect it to remain a

Figure 3: The Java “Dashboard” that is inserted at the top of
each page served to the user through the proxy.

popular option for security-conscious users or users with
older browsers.

• How intrusive or effective do users perceive the different
styles of interfaces to be? How many controls can be
visible in a dashboard-style interface before its complexity
overwhelms the user, defeating the appealing simplicity of
the WWW interface? Should the dashboard be
“customizable”, similar to (e.g.) the Microsoft Office
toolbars?

• The HTML-decoration interface is currently deployed in
the production TranSend service; the Java and JavaScript
experimental interfaces are expected to be deployed soon,
and users will be able to select from among the different
interfaces. Our ability to track which users are using each
interface, and how often they switch, will form the basis of
an interesting HCI experiment.

5 Conclusions
Proxied Internet access, through services such as TranSend,

customizes content from existing servers according to each user’s
preferences and specifications. Orthogonal user-interface exten-
sions complement this model by enabling users to customize the
way they view and interact with the content, while remaining
compatible with existing commodity browsers. We believe that
this problem domain is a natural fit for technologies such as Java
and JavaScript, and expect their impact in this area to equal or
exceed their importance in providing site-specific services and
interfaces.

We encourage the reader to try TranSend (and send feedback)
by visiting: http://transend.cs.berkeley.edu

6 References
[1] C.M. Bowman et al. Harvest:A Scalable, Customizable Discovery and Access

System. Technical Report CU-CS-732-94, Department of Computer Science,
University of Colorado, Boulder, August 1994

[2] Community Connexion, Inc. The Anonymizer. http://www.anonymizer.com

[3] A. Fox and E. A. Brewer.Reducing WWW Latency and Bandwidth Require-
ments via Real-Time Distillation. Proc. WWW-5, Paris, May 1996.

[4] A. Fox, S. D. Gribble, E. Brewer and E. Amir.Adapting to Network and Client
Variation Via On-Demand Dynamic Distillation. Proceedings of ASPLOS-
VII, Boston, October 1996.

[5] A. Fox, S. D. Gribble, Y. Chawathe, and E. Brewer.The TranSend Proxy Ser-
vice. http://transend.cs.berkeley.edu.

[6] Inktomi Corporation: The Inktomi Technology Behind HotBot. May 1996.
http://www.inktomi.com/whitepap.html.

[7] Princeton University Secure Internet Programming, http://www.cs.prince-
ton.edu/sip/.

[8] Takao Shimada et al.Interactive Scaling Control Mechanism for World-Wide
Web Systems. Proceedings WWW-6, Santa Clara, May 1997.

