
ICrafter : A Service Framework for Ubiquitous
Computing Environments

Shankar R. Ponnekanti, Brian Lee, Armando Fox, Pat Hanrahan, and Terry
Winograd

Stanford University

Abstract. In this paper, we propose ICrafter, a framework for services
and their user interfaces in a class of ubiquitous computing environments.
The chief objective of ICrafter is to let users flexibly interact with the
services in their environment using a variety of modalities and input
devices. We extend existing service frameworks in three ways. First, to
offload services and user input devices, ICrafter provides infrastructure
support for UI selection, generation, and adaptation. Second, ICrafter al-
lows UIs to be associated with service patterns for on-the-fly aggregation
of services. Finally, ICrafter facilitates the design of service UIs that are
portable but still reflect the context of the local environment. In addition,
we also focus on the system properties such as incremental deployability
and robustness that are critical for ubiquitous computing environments.
We describe the goals and architecture of ICrafter, a prototype imple-
mentation that validates its design, and the key lessons learnt from our
experiences.

1 Introduction

In this paper, we propose ICrafter: a service framework for a class of ubiqui-
tous computing environments known as interactive workspaces [6]. An interactive
workspace is a physically co-located, technology-rich space consisting of intercon-
nected computers (desktops, laptops, handhelds, etc), utility devices (scanners,
printers, etc) and I/O devices (large wall-mounted and table-top displays, micro-
phones, speakers, etc), where people gather (with their own laptops, handhelds,
etc) to do naturally collaborative activities such as design reviews, brainstorm-
ing, etc. Example interactive workspaces include conference/meeting rooms and
lecture halls.

The main objective of ICrafter is to allow users of interactive workspaces
to flexibly interact with the services in the workspace. By service, we refer to
a device (such as a light, projector, or a scanner) or an application (such as a
web browser or Microsoft PowerPoint running on a large display) that provides
useful functions to end-users. Users interact with the services using a variety of
access/input devices (such as laptops, handhelds, etc). We use the term appliance
to refer to such an access/input device. (In other words, service UIs run on
appliances.) ICrafter is a framework that allows developers to deploy services
and to create user interfaces to these services for various user appliances.

The design goals of ICrafter stem from our experiences with users in iRoom,
a prototype interactive workspace at Stanford, which serves as the experimental
testbed for our research. Many of these goals arise from fundamental character-
istics of ubiquitous computing environments, such as heterogeneity, presence of
legacy components, and incremental evolution. We have implemented a proto-
type of the ICrafter framework in iRoom and have developed several services
(and their UIs) using the framework.

Recent years have seen a spate of interest in service and UI frameworks for
ubiquitous computing environments. Several industry and research projects have
proposed various frameworks such as Jini [9], UPnP [17], Hodes et al. [10, 11],
and Roman et al. [12]. ICrafter extends the existing work in three important
ways:

1. ICrafter places intelligence in the infrastructure to select, generate, and/or
adapt service UIs. This helps offload services and appliances and has several
advantages such as extensibility, and better handling of legacy services and
resource-limited appliances.

2. ICrafter provides a novel scheme for “on-the-fly” aggregation of services.
3. ICrafter facilitates creation of UIs that are portable across workspaces but

still reflect the context of the current workspace.

The rest of the paper presents the goals, architecture, and implementation of
ICrafter. We also present several examples that illustrate its use and the lessons
we have learned from our experiences.

2 Design Goals

The objectives of the ICrafter framework may be separated into three over-
arching goals: adaptability, deployability, and aggregation. We believe that the
first two goals are not specific to this framework alone but are central to ubiqui-
tous computing in general, because heterogeneity, legacy components, and incre-
mental evolution are the norm rather than the exception in these environments.

2.1 Adaptability

Interactive workspaces are characterized by heterogeneity at both the appliance-
level and the workspace-level. (The workspaces themselves maybe widely dif-
ferent depending on their physical geometries and which sets of devices they
contain.) Thus, the framework should facilitate adaptation to these two types of
heterogeneity.

Appliance adaptation. The framework should not only support several modal-
ities (e.g. a gesture-based UI or a voice-based UI), but also different appliances
with the same modality (e.g. a handheld computer vs. a pen-and-tablet form
factor computer vs. the screen of a user’s laptop). Also, appliances can vary

widely in resources.

Workspace adaptation. The framework should allow the generated UIs to
include contextual information relevant to that workspace, which helps the user
identify the association between the UI elements and the environment. This as-
sociation may be established by human readable descriptions (e.g., a projector
control interface that says “projector for middle screen”), layout of interface ele-
ments (e.g., a light interface that positions widgets to indicate the actual physical
positions of corresponding lights in that space), or by some other means. The
challenge is to facilitate the design of UIs that can be reused across workspaces.
It is impractical to hand-design UIs for common services at each installation for
every appliance.

2.2 Deployability

For the framework to be easily deployable and evolvable, it must satisfy the fol-
lowing requirements.

Flexibility in language/ OS/ UI toolkit support. The system should not
force the use of particular programming languages, UI languages, or operating
systems, since it is unlikely that a single programming language and/or UI lan-
guage will work for all devices in the near future. Also, supporting off-the-shelf
UI renderers such as web browsers is essential.

Spectrum of UIs. It is impractical to manually design UIs for all services
for each appliance, especially considering the incremental evolution inherent in
this environment. When a new service is added, ideally it should be accessi-
ble without the necessity of having to manually design UIs for every appliance.
Similarly, adding a new appliance must not force writing UIs for that appli-
ance for all existing services. Thus, support for (possibly partial) automatic UI
generation is desirable. On the other hand, because effective UI design is an
art, the framework should allow the presentation of custom-designed UIs. The
framework should therefore support a spectrum of UIs ranging from fully hand-
designed custom UIs to automatically generated UIs.

Robustness. A complex system with many components must handle par-
tial failures gracefully for deployment to be practical. Partial failures may be
software-related (a service fails, or some component of the UI-generating infras-
tructure fails) or hardware-related (a physical device fails or stops responding).

2.3 Aggregation

The framework must facilitate the creation of user interfaces for combinations of
services. Users often need to control several services simultaneously to perform

a task, such as a presentation or a meeting; for example, during a slide presen-
tation, it is convenient to aggregate the lighting controls with the slide show
controls (start the slide show, etc.)

To the best of our knowledge, all existing frameworks attach UIs to individual
services, which makes it difficult to control groups of services. Of course, an ad-
hoc UI can be generated by just naively grouping together all the individual
service UIs, but there is more to controlling a group of services than simply
controlling each one separately. For example, suppose that a user wishing to
take a picture from a camera and print it requests the UI for the camera and
the printer. If an ad-hoc union of the camera UI and printer UI were returned,
the user would still have to request the camera to take a picture, save it in
a temporary location, upload the saved picture to the printer, and request for
printing.

Ideally, a UI for the camera-printer combination should “recognize” that the
two can be composed in a useful manner (that is, the output of the camera
can be sent to the printer) and allow the user to do this as easily as possible.
Of course, all existing frameworks allow creating a new specific printer-camera
service, which in turn accesses the printer and the camera. However, creating
services for every combination of services is impractical (the number of com-
binations explodes combinatorially). Thus, another goal of ICrafter is service
aggregation without necessarily requiring the creation of composite services.

3 Architecture

In this section, we present the ICrafter architecture and explain how it achieves
the goals enumerated in the previous section. In the ICrafter framework, user ap-
pliances request UIs for services from an infrastructure-centric component called
the interface manager (IM) as shown in figure 1. When the IM receives a request
for UI for one or more services, it first selects one or more generators based on
the requesting appliance and the service(s) for which the UI was requested. (A
generator is a software entity that can generate a UI for one or more services for
a particular appliance). Next, the IM “executes” the generators and returns the
generated UI to the requesting appliance. To generate the UIs, generators need
access to information about the services, appliance, and the workspace context.
This information is provided as follows:

– Services beacon 1 their presence, and the beacons include the service de-
scriptions (information about the service, such as the operations supported
by the service).

– When an appliance requests a UI from the IM, it supplies an appliance
description that provides information about the appliance (such as number
of pixels).

1 A beacon is a periodic announcement to a broadcast medium which any other entity
on the medium can “listen” to.

(a) (b)

Fig. 1. ICrafter Architecture. Appliances request UIs from the Interface Manager while
supplying an appliance description. The Interface Manager first selects appropriate UI
generators based on the requesting appliance and the services for which the UI was
requested. Next, it executes the generators with access to the service descriptions,
appliance description, and the context to generate the UI.

– Information about the workspace context is contained in a central datastore
called the context memory.

Thus, when the generators are executed in the IM, they are provided access
to the service descriptions, appliance description, and the context memory. Next,
we explain how we address the design goals laid out in section 2 using the above
framework.

3.1 Designing for adaptability

Among existing approaches, the Hodes approach [10, 11] best handles appliance
heterogeneity. In this approach, if the service does not supply a predefined UI
suitable for the appliance, the appliance-side generates a suitable UI for itself
from the service description. However, if the appliance is resource-limited, there
is a need for alternatives, such as appliance-side proxies. We apply ideas from
previous research in related domains [7] to generalize this approach by allowing
“intelligence” to exist in the IM (i.e., a third party other than the service or
the appliance) to handle UI selection, generation, or adaptation. This lets the
resource-rich, infrastructure-based IM select, adapt, or generate a suitable UI
based on the requesting appliance.

We also rely on this level of indirection to handle workspace heterogeneity.
We cleanly separate workspace context information from the UIs and store the
workspace context information in the context memory. To avoid hard-coding
workspace information in the UIs, we stipulate that UI generators (and not UIs)

be hand-designed. The generators can access the workspace context information
from the context memory and generate the actual UIs. Examples of workspace
context information include physical locations and dimensions of various devices
(such as lights and displays), descriptive information about the devices (e.g.,
“Display1” is the “front display”, etc), and device relationship information (e.g.,
“projector2” projects onto display “screen1”).

An alternative to a centralized context memory would be to allow each gen-
erator to read the workspace context information from its own configuration file.
However, this approach requires keeping the configuration files for all generators
for the same service synchronized. Furthermore, changes in multiple files may be
required if the room geometry changes. These kinds of administration are sim-
plified when such information is centralized. Other advantages of centralizing
context are explained in [20].

3.2 Designing for deployability

We accommodate incremental evolution by allowing for a range of generators,
ranging from fully custom to fully generic. Fully generic generators are service-
independent (but appliance-specific) and can generate a UI for any service for
a particular appliance, and they enable rapid integration of new services and
appliances. However, generators specific to a particular service class (such as
InFocus projectors) can also be written and in the extreme case, they can also
be written for a particular service instance. Since the generators are run in the
infrastructure by default, they can be resource-intensive if necessary even if the
resulting UIs may actually be simple.

Service descriptions in ICrafter contain only the service operations and their
parameters. They do not contain machine names, port numbers, URLs, or UI ele-
ments unlike previous approaches [11, 12, 17]. This avoids the need for modifying
the descriptions on a per-instance basis.

ICrafter is also designed to allow UIs for widely-deployed “legacy” renderers
such as web browsers. Generic protocol gateways convert from the renderers’
transport protocols (such as HTTP) to ICrafter protocols.

3.3 Designing for Aggregation

As mentioned in section 2, there is a need for creating UIs for combinations of
services without necessarily having to create composite services for all combi-
nations of services. Unlike existing frameworks, we allow UIs to be attached to
groups of services rather than individual services. However, while useful, this
only provides a partial solution, because this still requires creation of UIs (if not
composite services) for every combination of services.

We propose a novel approach that exploits service interfaces to address this
challenge. Here the term interface refers to programmatic interface (as in the
interfaces defined by the keyword interface in Java), not user interface. It is
general practice in object-oriented languages such as Java to have classes imple-
ment generic interfaces that represent particular behaviors. Similarly, services

can also implement generic interfaces representing particular behaviors. Most
devices (such as lights, projectors, etc) can implement a PowerSwitchInterface
that contains the methods poweron and poweroff. Similarly, the printer can
implement a DataConsumer interface while the camera can implement a Dat-
aProducer interface.2 We then allow generators to be written for patterns of
interfaces. For example, a generator can be written for a data consumer-data
producer pattern. Such a generator can not only be used by camera-printer
combination, but also by a scanner-display combination, a scanner-printer com-
bination, etc.

When a user requests an interface for a camera and a printer, the IM searches
for matching generators and finds the consumer-producer generator. Of course,
the UI produced by this generator does not allow the user to perform operations
specific to the camera or the printer (such as adjusting the zoom). However, these
operations can be performed using the individual camera and printer UIs. Thus,
the IM can (for example) return a simple aggregate of the producer-consumer
UI, the printer UI, and the camera UI.

As another example, a simple generator can be written for one or more Pow-
erSwitchInterface implementing services, that allows all these services to be pow-
ered on or off. Suppose the user requests a UI for all the lights in the room and
a projector. The UI produced by PowerSwitchInterface generator can allow all
the lights and the projector to be turned on with a single action.

4 Implementation

In this section, we describe the prototype implementation of ICrafter frame-
work in the iRoom. The block diagram of the prototype is depicted in fig-
ure 2. The EventHeap [5] is a flexible event-based communication system used
by all iRoom applications. The EventHeap is conceptually based on the tu-
plespace/blackboard model espoused by LINDA [1] and is currently implemented
using IBM TSpaces [18]. Processes post events to the shared EventHeap and can
subscribe to events matching a specified pattern. While the prototype ICrafter
implementation uses the EventHeap, it can also be implemented using other
communication abstractions such as RPC/RMI or message passing. Similar to
the EventHeap, the context memory is also a generic workspace software com-
ponent that is used by all iRoom applications (not just ICrafter). The context
memory is implemented [20] as an XML-based lightweight datastore which al-
lows storing and retrieving workspace context information using an XML-based
query language. We do not discuss the implementation details of the EventHeap
and the context memory any further in this paper.

As shown in figure 2, when a user requests a UI for one or more services
(we explain how this process is bootstrapped later), the user appliance sends a
request to the IM (step 1). The IM responds with the appropriate UI (step 2),
2 Of course, this assumes that the data types are inter-operable. However, such as-

sumptions are not required by the mechanism itself, but by the service interfaces
chosen here.

Fig. 2. ICrafter prototype implementation

which is rendered on the appliance by a renderer (step 3). The renderer itself
is not part of ICrafter, and can be any native renderer, such as a web browser.
User actions on the UI (step 4) result in remote invocations on the target services
(step 5). Note that the remote invocations themselves are not mediated by the
IM, so there is no slowdown in the user interaction with the UIs.

As seen by the application developers for the ICrafter framework, ICrafter is
a set of specifications/APIs for developing workspace services and appropriate
appliance UIs for them. Thus, to deploy a new service (such as a camera), an
app developer needs to write a camera service using the ICrafter service APIs.
Similarly, ICrafter provides specifications for an app developer to create UI gen-
erators. For example, to create a HTML UI for a service, the app developer needs
to create a HTML template (which is explained below).

Before describing the implementation specifics, we first illustrate the end-user
experience by presenting a walk-through for an example iRoom scenario.

4.1 Walk Through

A user walks into the iRoom with her laptop and starts the SUIML 3 interpreter.
The SUIML interpreter is setup to first request the IM (which is a well-known
service) for its own (i.e., the IM’s) UI. The IM returns its UI which is shown
in figure 3(a). The UI of the IM allows the user to select one or more services
and request the UI for them. Note that the IM is just another service, and its
UI is generated just as for any other service. That is, the IM locates a suitable
SUIML generator for itself and executes it to produce the desired SUIML UI.
3 SUIML (Swing UI Markup Language) is a declarative markup language developed

in iRoom for describing GUIs produced by the Java Swing toolkit.

(a)

(b)

Fig. 3. Walk Through Example. The user first sees the IM’s UI (part (a)), which
allows her to choose one or more services. The returned UI is an aggregate of the
UI for each service chosen and the data movement UI. The data movement UI (part
(b)) is generated by the generator for “multiple consumers-multiple producers” pattern
that has no specific knowledge of the services involved except that they implement the
DataConsumer and DataProducer interfaces. The UI shows a top-down view of the
room. (The white region is a table which is a fixed landmark in iRoom.) The dark grey
rectangles identify the service locations (the three wall-mounted SmartBoards at the
top, the mural on the left, and the laptop at the bottom). The user can drag and drop
data from any of these services onto another. For example, dragging from the laptop
to the middle SmartBoard results in the URL currently displayed on the laptop to be
displayed on the middle SmartBoard. The user can also drag a URL from a browser on
her laptop onto any of the consumer services. (As expected, dragging from the mural
has no effect because it is only a consumer).

While the UI shown here presents a list of services, a different generator could
result in (for example) a spatial map of all available services. The user selects
the instances of the butler service 4 running on her laptop and the three wall-
mounted SmartBoards (all the SmartBoards are attached to Windows desktops)
and the mural service 5.

The UI returned for this request is shown in figure 3(b). Apart from the
individual service generators, the generator for the multiple consumers-multiple
producers pattern also matches at the IM. Notice that the consumer-producer
generator has no specific knowledge of the butler or the mural, but just uses the
information that they implement the DataProducer and DataConsumer inter-
faces to generate a “data movement UI” that allows data to be moved between
these services. This illustrates how aggregation works in ICrafter.

We now proceed to describe the internal workings of the ICrafter implemen-
tation in some detail. Throughout this description, we will refer to Figure 4
which shows a very simple example that illustrates the details of the interface
generation process.

4.2 Service Descriptions

Our language for describing services is an XML-based language called SDL (Ser-
vice Description Language). SDL is similar to ISL (Interface Specification Lan-
guage) in Hodes et al. [11] and the UPnP [17] service descriptions. Figure 4(a)
shows part of the SDL for the projector service. Just as ISL, it lists the opera-
tions supported by the service. However, unlike previous approaches, SDL does
not contain addresses/ URLs. For services written in Java, SDL is generated au-
tomatically at runtime using Java reflection and included in the service beacons.
This avoids the problem of maintaining consistency between services and their
descriptions as services evolve. We also provide API calls to service developers
that can optionally be used to refine the generated SDL.

4.3 Discovery and Remote Invocation

Discovery is handled by service beacons. Services beacon their presence by post-
ing short-lived events to the EventHeap, and the IM (or any other entity includ-
ing the appliances) can query the EventHeap for all (unexpired) beacon events
to discover services.6 Service beacons contain the service descriptions and also a
unique name for the service instance that is used for remote invocations on the
4 The butler service can run on any Windows machine and provides two functions

(among others). First, it allows a call event posted on the Event Heap to specify an
arbitrary URL to be displayed in a browser running on its host machine. Second,
when queried, it can return the URL currently displayed in the top-level browser
window on its host machine. Thus, it implements both the DataConsumer and Dat-
aProducer interfaces.

5 The mural service runs on a high-resolution display called the mural and displays
data on the mural on-demand. Thus, it implements the DataConsumer interface.

6 Our current discovery scheme is relatively primitive and is an area of future work.

(d) Generated HTML (e) Rendered Interface

<html>
<h1> Projector Control </h1>
<form
 action="http://manager.abc.edu/servlet/services"
 method="get">
<SELECT name="Param1">
 <OPTION VALUE="source1">iRoom Server
 <OPTION VALUE="source2">Laptop Cable
 <OPTION VALUE="source3">Visualization Cluster
</SELECT>
<input type="hidden" name="ServiceName"
 value="ProjectorService1">
<input type="submit" name="OpName" value="input">
</form>
</body>
</html>

<html>
<h1> Projector Control </h1>
{
 $projector = lookup_cmx($serviceName, "projector")	
 $computer1 = lookup_cmx($projector, "computer1")	
 $computer2 = lookup_cmx($projector, "computer2")	
 $computer3 = lookup_cmx($projector, "computer3")	
}
<form action="http://manager.abc.edu/servlet/services"
 method="get">
<SELECT name="Param1">
 <OPTION VALUE="source1"> { print $computer1 }
 <OPTION VALUE="source2"> { print $computer2 }
 <OPTION VALUE="source3"> { print $computer3 }
</SELECT>
<input type="hidden" name="ServiceName"
 value="{ print $serviceName }">
<input type="submit" name="OpName" value="input">
</form>
</body>
</html>

<?xml version="1.0"?>
<sdl type="ProjectorService">
 <operations>
 <operation>
 <name>input</name>
 <description>Switch the input</description>
 <parameters>
 <parameter>
 <name>source</name>
 <type>stringenum
 <value>computer1</value>
 <value>computer2</value>
 <value>computer3</value>
 </type>
 <description>Source to switch to</description>
 </parameter>
 </parameters>
 </operation>
 </operations>
</sdl>

(c) Projector Service Template

(b) Projector Service SDL

ProjectorService1 projector proj1
proj1 computer1 iRoom Server
proj1 computer2 Laptop Cable
proj1 computer3 Visualization Cluster

(a) Context Memory

Lookup the sources connected to the projector
controlled by this projector service instance

Present a pull down menu containing the sources
connected to this projector

Bind to the service instance

Fig. 4. Interface Generation Process. Part (b) shows portion of the projector service
SDL with just one operation “input”, which allows the source of the projector to
be switched among any of the connected computers. Part (a) shows the information
relevant to a projector service instance (“ProjectorService1”) in the context memory.
The projector service template shown in (c) can generate the UI for any projector
service instance. It is passed the unique identifier of the projector service instance
(whose UI is to be generated) through the variable serviceName. The template looks
up the sources connected to the projector controlled by the projector service instance
with the given name, and generates a UI that allows the user to select one of them.
(The procedure lookup cmx looks up a property in the context memory.) The HTML
generated when the template is processed for the service instance “ProjectorService1”,
and the generated interface in the browser are shown in (d) and (e) respectively.

service instance. Because beacons are marked as short-lived, the EventHeap’s
event expiry mechanism eventually removes beacon events from failed services.
Remote invocations are marshaled into call events and return events (if there is
a return). The use of loosely-coupled, semi-persistent event-based infrastructure
for communication instead of RMI/RPC (as in Jini and other frameworks) has
led to increased robustness. First, certain transient failures of services are easily
masked. (A service restarting after a transient failure can still pick up call events
directed to it if they have not expired yet). Second, certain components such as
the IM can be replicated for fail-over/efficiency such that any event directed to
a replicated component is picked by exactly one of the replicas.

4.4 Appliance Descriptions

In our current implementation, we assume that every appliance supports one or
more UI languages and we rely on the corresponding UI language interpreter
(e.g., web browser for HTML) to render the UI and handle user actions. Thus,
appliance descriptions simply consist of the set of UI languages supported by
the appliance and optional (name, value) pairs describing the other attributes
of the appliance. We have used four different UI languages in ICrafter so far:
HTML, VoiceXML, MoDAL [19] (a markup language from IBM Almaden for
PalmOS-based devices), and SUIML.

4.5 Generators

Most generators have been implemented using a template system. A template is
UI markup in one of the supported UI languages with embedded Tcl or Python
scripts. (An example template for the projector service is shown in Figure 4(b)).
The embedded scripts may use a set of library routines to access the context
memory, service description, etc. When a template is executed, the embedded
scripts are executed and they are replaced by the output they produce. Custom
templates can be written for a service and UI language or a generic service-
independent template can be written for a given UI language.

4.6 Generator Database

The generator database lists the language (currently HTML, VoiceXML, MoDAL,
or SUIML), platform (currently Tcl, Python, or Java), suitable text description,
location, and the associated services/patterns for all the generators. Currently,
simplified regular expression-like syntax is used for representing patterns. A gen-
erator can be associated with a service instance or a service interface (such as
the PowerSwitchInterface) or any pattern of service instances and interfaces. Ex-
ample patterns include “all services that implement the PowerSwitchInterface”
and “multiple services implementing DataConsumer and multiple services imple-
menting DataConsumer”. Generic generators are marked as service-independent,
so that they can match any service. We have had relatively limited experience
with pattern based matching for generators so far and we plan to explore it
further in the near future.

4.7 Interface Manager

When the IM receives a request for UI for a single service, it first searches for
a generator for that service instance, then for that service interface, and finally
for the service-independent generator. For a UI request for multiple services,
the generator selector first searches for generators for each service (according to
the algorithm mentioned earlier). Second, the generator selector searches for all
the generators that match any subset of the given set of services. Finally, the
selector returns a simple aggregate of all the generators that matched in the first
or the second step. In the execution stage, depending on whether the generator
is a Tcl/Python template or a Java class, an appropriate processor is chosen
to execute it. The execution produces code in a UI language supported by the
appliance. (For example, figure 4(c) shows the HTML produced by the execution
of the template in (b)).

5 Examples

We present more example service UIs written for ICrafter in this section that
highlight various aspects of the system. Our experience so far indicates that
template-based UIs are easy to write, because no code needs to be written by
the UI developer apart from the simple embedded Tcl/Python scripts. Since
our infrastructure provides generic back-end code (such as the HTTP gateway)
for converting user actions in any supported UI language to remote invocation
events, the UI developer need not write any backend code (such as servlets/CGI
for HTML etc). For example, no back-end code was written by the UI developer
for the projector service UI shown in figure 4.

Appliance adaptation. Figure 5 shows a simplified illustration of the butler
UI for a PalmOS-based device. It offers the same functionality as the SUIML
laptop UI for the same service (not shown here but similar to figure 3(b)) but
is less convenient because of lack of drag-and-drop in PalmOS. Creating this UI
involved only writing the MoDAL markup with the simple embedded Tcl state-
ments for accessing the context memory. The IM automatically picks a suitable
UI based on the requesting appliance.

Workspace adaptation. Figure 6 shows the light control SUIML UIs for two
different workspaces. Note that the UIs are very different but are generated by
the same template accessing different context memories. Equipment locations
and dimensions are detailed in the context memory; hence, the generated UIs
reflect the context without user intervention or changes to code. This illustrates
the ability to reuse templates while still creating UIs tailored to the workspace.

Custom and automatic UIs. Figure 7 illustrates the tradeoffs between UIs
generated by custom and generic templates. The automatically generated UI
doesn’t require a UI developer, while the custom designed UI is functionally

Fig. 5. Global butler control UI using MoDAL on a PalmOS device is shown above.
This UI allows users to remotely display a URL on any screen in iRoom using their
PalmOS device. Once the user selects a screen using the iRoom top-down view in the
left form, the form on the right appears, which prompts the user to enter a URL.

Fig. 6. Light control UIs for iRoom (left), which has a table, five displays, and eight
lights on ceiling tracks, and another workspace (right), which has two tables, two
displays, four overhead lights, and two corner lamps. The user turns a light on using the
yellow button corresponding to the light, and turns a light off using the black button.
The UIs show top-down views of the workspaces generated from the information in the
respective context memories.

Fig. 7. Automatic and Custom Generation of UIs. The automatically generated SUIML
UI (left) was generated solely based on the SDL using only knowledge of the operations,
and the types of each parameter. Though not aesthetically pleasing, it is functional. The
custom-designed SUIML UI (right) is superior in two respects. First, it is functionally
more convenient. It has descriptive names for projector input sources (such as iRoom
server, laptop cable, etc), and has commands for commonly-used settings (standard
configuration buttons for meetings and lectures). Second, it is aesthetically pleasing, by
using intuitive colors for power switches, easily-recognizable icons where appropriate,
and logical grouping of commands by type (power, input, display).

and aesthetically better. Note that the UI developer could use the automatically
generated UI as a starting point for the custom UI design.

Voice Interface. Part of an example VoiceXML UI (simplified for illustrative
purposes) written for ICrafter is shown below.

<form id="projectorcontrol">
<field name="operation">

<prompt>
Please choose a projector operation.
Available functions are turn on, turn off, switch input.

</prompt>
<grammar>

[turn] on [[the] projector] "turn on"
| [turn] off [[the] projector]"turn off"
| (switch | set) input [of [the] projector] "switch the input of"

</grammar>
</field>
<filled>

You chose to <value expr="operation"/> the projector.
<submit next="http://server:8080/servlet/voiceservices"/>

</filled>
</form>

The resulting dialog is shown below:

COMPUTER: Please choose a projector operation. Available functions
are turn on, turn off, switch input.
USER (into microphone): Turn on.
COMPUTER: You chose to turn on the projector.

Though we can automatically generate UIs for some interaction styles, it
is extremely difficult to model speech interactions (e.g., phraseology, for both
humans and computers) in a generic fashion, short of full natural language pro-
cessing. The above UI was thus hand-written by a UI designer, who customized
it based on the projector service descriptions and her knowledge of speech inter-
actions. Even though they are hand-designed, it is still easier to create these UIs
using the ICrafter template framework since no back-end code needs be writ-
ten and the Python/Tcl helper routines that provide access to context memory,
service and appliance descriptions simplify appliance and workspace adaptation.

6 Related Work

We concur with other researchers’ identification of many of our design goals,
although we sometimes use different terminology. For example, PIMA [3], Por-
tolano [2], and Borriello et al. [4] also identify many of our design goals as
challenges to be addressed by researchers in ubiquitous computing.

Much work has gone into discovery [15–17]. We have not used existing dis-
covery schemes since the simple mechanism based on EventHeap beacons has
proven sufficient for us so far, given our smaller scale.

Recent work on generic UI modeling languages is orthogonal to our work.
UIML [8] is an appliance-independent XML UI language, which uses style sheets
to map the appliance-independent interface description to markup languages or
programming languages. Eisenstein et al. [13] present model-based techniques
for designing UIs in a platform-independent manner that also adapt to certain
types of context . If widely deployed and available, such generic UI languages
can be used in ICrafter for writing templates thus simplifying adaptation. We
have leveraged some of the recent work in the design of context-aware appli-
cations in general and architectures for storing context information [21, 20] to
achieve workspace-adaptation in ICrafter. Projects such as EasyLiving [22] and
iLand [23] are also investigating software architectures for technology-rich spaces,
but they do not explicitly focus on service and UI frameworks.

Among related research and industry efforts, ICrafter is most closely related
to Jini [9], UPnP [17], Hodes et al. [10, 11] and Roman et al. [12]. The Jini Ser-
viceUI [14] project allows Java UI code to be registered as a service attribute
with the lookup service. Clients are responsible for selecting one of the registered
UIs based on which toolkits (such as Swing) the UI code needs. In UPnP (which
is a generalization of controlling devices via embedded Web servers), service de-
scriptions include control and presentation URLs which can be accessed by the
client using a HTTP-based protocol. In the document-based approach of Hodes
et al., service advertisements include a URL where the service documents can
be downloaded from. The service documents contain the machine addresses and
URLs to download UI code from. If there is no suitable UI, the client can auto-
matically generate its own UI from the service document. Roman et al. propose
a “device-independent” representation of services that attempts to capture both
service functionality and UI, but the UI elements they use are GUI-centric. As
mentioned earlier, ICrafter extends all these four approaches in three significant
directions: infrastructure support for UI generation/selection/adaptation, aggre-
gation, and workspace adaptation. In addition, some of these existing approaches
allow only certain programming languages and UI languages/ modalities to be
used, some others restrict the clients to be web browsers, while yet others do not
support web browsers at all.

7 Lessons and Conclusions

We identified the goals for a service framework for interactive workspaces and
designed a framework that is compatible with these goals. Although the frame-
work was specifically designed for interactive workspaces, many of the ideas carry
over to service frameworks for many other ubiquitous computing environments
also. Our framework makes three contributions: infrastructure support for UI se-
lection/adaptation/generation, associating generators with service patterns for
on-the-fly aggregation, and workspace adaptation. In addition, our design gives

utmost importance to system properties such as incremental deployability, sup-
port for legacy components, and robustness which are critically important for
ubiquitous computing environments. To validate the design, we implemented a
prototype in our experimental workspace, the iRoom, and built several services
and appliance UIs for them.

In conclusion, we attempt to abstract away the domain-specific details and
examine in retrospect the key design techniques that were used in ICrafter to
address the challenges that arise in ubiquitous computing environments. While
these techniques are not new, we believe they will serve as useful reminders for
ubiquitous computing researchers.

– ICrafter often leverages a “level of indirection” for dealing with heterogene-
ity. Whenever two sets of variable entities need to inter-operate with one
another, a level of indirection is useful. For example, the key for the inter-
operation of services and appliances in ICrafter is the existence of intelligence
in a resource-rich third party to select and execute appropriate generator(s)
from among a range of generators. Similarly, to deal with the inter-operation
of UIs and workspaces, we introduce the context memory.

– To accommodate incremental evolution, we follow the guideline: “Provide a
reasonable default but allow for fine tuning”. For example, default UIs are
automatically generated by the generic generators, but custom generators
can always be written if desired.

– The use of loosely-coupled, semi-persistent event-based infrastructure for
communication instead of RMI/RPC has led to increased robustness. As
explained in section 4.3, certain transient failures are easily masked and
some components can be easily replicated for fail-over/efficiency.

8 Acknowledgements

We are grateful to Brad Johanson, Susan Shepard, Emre Kiciman, Caesar Sen-
gupta, Meenakshy Chakravorthy, Kathleen Liston, Kathy Richardson, George
Candea and Petros Maniatis for their help with this work. We also thank the
anonymous reviewers whose comments helped improve this paper. This work
was supported in part by the US Department of Energy, Contract B504665.

References

1. David Gelernter. Generative communication in linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80–112, January 1985.

2. M. Esler, J. Hightower, T. Anderson, and G. Borriello. Next Century Challenges:
Data-Centric Networking for Invisible Computing. The Portolano Project at the
University of Washington. In Proceedings of the Fifth ACM/IEEE International
Conference on Mobile Networking and Computing, pages 256-262, August 1999.

3. Guruduth Banavar, James Beck, Eugene Gluzberg, Jonathan Munson, Jeremy Suss-
man, and Deborra Zukowski. Challenges: An Application Model for Pervasive Com-
puting. In Proceedings of the sixth annual international conference on Mobile com-
puting and networking, pages 266-274, August 2000.

4. Gaetano Borriello and Roy Want. Embedded Computation Meets the World Wide
Web. In Communications of the ACM, 43(5):59-66, May 2000.

5. Brad Johanson and Armando Fox. The EventHeap: A Coordina-
tion Infrastructure for Interactive Workspaces. 2001. Unpublished draft.
http://graphics.stanford.edu/~bjohanso/papers/ubicomp2001/eheap_ubicomp.pdf

6. Stanford Interactive Workspaces Project. http://graphics.stanford.edu/~iwork/
7. Armando Fox, Steven D. Gribble, Yatin Chawathe and Eric A. Brewer. Adapting

to Network and Client Variation Using Active Proxies: Lessons and Perspectives.
IEEE Personal Communications (invited submission), August 1998.

8. Marc Abrams, Constantinos Phanouriou, Alan L. Batongbacal, Stephen M.
Williams, Jonathan E. Shuster. UIML: An Appliance-Independent XML User In-
terface Language. Eighth International World Wide Web Conference. May 1999.

9. Jim Waldo. The Jini Architecture for Network-centric Computing. Communications
of the ACM, pages 76-82, July 1999.

10. T. D. Hodes, R. H. Katz, E. Servan-Schreiber, L. A. Rowe. Composable Ad-hoc
Mobile Services for Universal Interaction. Proceedings of The Third ACM/IEEE In-
ternational Conference on Mobile Computing (MobiCom ’97), pages 1-12. Septem-
ber 1997.

11. Todd D. Hodes and Randy H. Katz. A Document-based Framework for Internet
Application Control. 2nd USENIX Symposium on Internet Technologies and Sys-
tems, pages 59-70. October 1999.

12. Manuel Roman, James Beck, and Alain Gefflaut. A Device-Independent Repre-
sentation for Services. Third IEEE Workshop on Mobile Computing Systems and
Applications, pages 73-82. December 2000.

13. Jacob Eisenstein, Jean Vanderdoncki, and Angel Puerta. Adapting to Mobile Con-
texts with User-Interface Modeling. Third IEEE Workshop on Mobile Computing
Systems and Applications, pages 83-92. December 2000.

14. The Jini ServiceUI Project. http://www.artima.com/jini/serviceui/
15. S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and R Katz. An architecture for a

secure service discovery service. In Proceedings of the Fifth Annual ACM/IEEE In-
ternational Conference on Mobile Computing and Networking, pages 24-35, August
1999.

16. J. Veizades, E. Guttman, C. Perkins, and S.Kaplan. Service Location Protocol,
June 1997. RFC 2165. http://www.ietf.org/rfc/rfc2165.txt

17. Universal Plug and Play. http://www. upnp.org/.
18. P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford. TSpaces. IBM Systems Jour-

nal, 37(3):454–474, 1998. 6
19. MoDAL (Mobile Document Application Language).

http://www.almaden.ibm.com/cs/TSpaces/MoDAL/

20. Terry Winograd. Architectures for Context. Human-Computer Interaction, 16.
2001.

21. A. K. Dey, D. Salber, and G. D. Abowd. A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human-Computer
Interaction, 16. 2001.

22. B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer, EasyLiving: Tech-
nologies for Intelligent Environments, Handheld and Ubiquitous Computing 2000
(HUC2K), September 2000.

23. Norbert Streitz, Jorg Geibler, and Torsten Holmer. Cooperative Buildings - Inte-
grating Information, Organization, and Architecture. First International Workshop
on Cooperative Buildings (CoBuild 98), pages 4-21, February 1998.

