
User Interfaces for Network Services: What, from Where, and How

Shankar R. Ponnekanti, Luis Alberto Robles and Armando Fox
Stanford University

Computer Science Dept
353 Serra Mall, Stanford, CA 94305, USA
{pshankar,lrobles,fox}@cs.stanford.edu

Abstract

An important problem in the context of network services
in ubiquitous computing is the support of ad-hoc interac-
tion. Ad-hoc interaction allows a user entering an environ-
ment to discover, request, and interact with user interfaces
for the locally available network services, even if she has
done minimal or no installation in advance. We observe
that most recently-proposed ad-hoc interaction frameworks
lack two important mechanisms: distribution and person-
alization. A distribution mechanism would make it easy to
add third-party UI’s and to centrally administer UI’s across
multiple independent workspaces forming an administrative
or logical unit, such as all workspaces on a campus. A per-
sonalization mechanism would enable a user to see familiar
UI’s as she roams to different workspaces. We propose ex-
tensions to an existing ad-hoc interaction system, ICrafter,
that enable these two independent behaviors. The mech-
anisms raise important policy questions; although we have
not studied optimal policies, we outline the policy space and
the policies we have adopted.

1 Introduction

As originally envisioned by Mark Weiser [15], future
conference rooms, lecture halls, and office environments
are expected to consist of numerous hardware and software
”network services”. These services could be software ap-
plications running on public devices (such as a viewer run-
ning on a large display) or ”smart” utility devices. These
utility devices will not be peripherals controlled by device
drivers but first-class network citizens capable of speaking
standard Internet protocols. We use the termworkspace
to refer to such a physically co-located space consisting
of various network services. We begin by describing typ-
ical scenarios in future workspaces, loosely based on our
laboratory iRoom, which is shown in figure 1. Recently
proposed service frameworks such as Sun’s Jini [2], Mi-

Figure 1. The iRoom. Modeled after a fu-
ture office workspace, it contains several
software-controlled utility devices and large
displays.

crosoft’s UPnP [5], ICrafter [10], Hodes et al [9] promise to
make such scenarios real in the near future.

1.1 Motivating scenarios

Jane walks into a workspace with her laptop and double-
clicks the “show services” icon. As shown in figure 2(A), a
Java Swing1 UI showing the list of services currently run-
ning in the workspace is shown on her screen. She selects
the four display services, and clicks the button “Show in-
terface(s)”. Using the returned UI (shown in figure 2(B)),
Jane simply drags a URL onto one of the displays, causing
the web page to be opened on that display. Similarly, she
drags two other URL’s on to two other displays respectively.
She then selects the lights service, and uses the returned UI
(shown in figure 2(C)) to turn some of the lights on.

Observation 1 A user can control the smart-device ser-
vices without ever needing to connect these devices directly

1Swing is a Java-based GUI toolkit.

(A) (B)

(C) (D)

Figure 2. Ad-Hoc interaction illustrated. (A) A Swing UI showing all available services in a workspace. (B) A Swing UI for
four displays in the workspace. The UI shows an overhead view of the workspace with each dark grey panel representing a display.
The positions of the grey panels reflect the physical positions of the corresponding displays. Dragging a URL onto a display causes
the web page to be opened on that display. (C) A simplified Swing UI for the lights in the workspace. The eight yellow/black
button pairs are for turning on/off the lights respectively. The position of the buttons reflects the physical locations of the lights in
an overhead view of the workspace. (D) The “same” lights UI as in (C) customized to a different workspace.

to her laptop or installing device drivers for them. The user
simply requests UI’s for services and appropriate UI’s are
automatically returned. We use the term “ad-hoc interac-
tion” to refer to this mode of interaction.

Jane then requests a UI for three observation cam-
eras (say c1,c2,c3) and three video player services (say
v1,v2,v3). Using the returned UI, she sets up a desired
video routing (say, c1→v2, c2→v3, and c3→v1).

Observation 2 A user can request a multi-service UI (i.e.,
a UI for more than one service) and such a UI is automat-
ically returned. Recall that even in the earlier step, Jane
used a combined UI for the four displays.

Later, Jack walks into the workspace with a device that
doesn’t support Java Swing but has a regular web browser.
(Perhaps he carries a laptop without Java installed or a
PDA.) Jack also performs all the actions performed by Jane
above, using just the web browser. However, the plain
HTML-based UI’s he sees are inferior both aesthetically

and from ease of use standpoint, since plain HTML lacks
drag-and-drop or spatial positioning of widgets.

Observation 3 No one UI fits all users, since different
users carry different appliances, with different UI toolkits
installed.

1.2 Problem description and contributions

A natural question that emerges from the above scenar-
ios concerns what happens when the user requests a UI. The
interesting issues concern what UI is returned, from where
and how it is obtained. For most existing frameworks, the
UI’s are expected to be provided by the services themselves.
For example, in the UPnP (Universal Plug and Play) frame-
work, every smart device is expected to provide a HTML
UI served by an embedded web server. However, service-
provided UI’s are not enough, because every service can
hardly be expected to cater to all (current and future) user
appliances (laptop, PDA, next generation handheld), modal-
ities (GUI, pen and tablet, voice), and UI languages (Java

Swing, HTML, WML, C#). Also, multi-service UI’s (ob-
servation 2 above) cannot be expected to be provided by
any individual service.

In “more advanced” frameworks such as Jini [2] and
ICrafter [10], the UI’s are obtained not directly from the
services themselves but from a separate well-known “UI
broker” service (called lookup service in Jini and interface
manager in ICrafter). Consequently, these frameworks al-
low “third party UI’s” (provided by a party other than the
service itself) to be registered with the UI broker service.
Services also register the vendor-provided UI’s with the UI
broker service. When a UI is requested, the UI broker
service can return either a service-provided UI or a regis-
tered third party UI, whichever is available and appropri-
ate. Thus, with these frameworks, the ad-hoc interaction
behavior seen in a workspace can exploit both the UI’s pro-
vided by the services and the third party UI’s registered in
the workspace.

However, even these more advanced systems lack mech-
anisms for flexible control of the ad-hoc interaction behav-
ior either as seen by different users in a single workspace
or as seen by a specific user in different workspaces. In
particular:

• An administrator currently needs to manually locate
and register the needed third party UI’s. Also, there
is no easy means for centrally administering the third
party UI’s in a group of workspaces that can together
be considered a “logical unit”. For example, to add
a third party Swing light UI in all the workspaces in
a building, manual administration effort is needed at
every workspace.

• The end user has little control over which UI is re-
turned. As she moves across multiple workspaces, she
is likely to see differing UI’s, even for the same ser-
vice, because different service vendors could provide
different UI’s and/or because different third party UI’s
are registered in these workspaces. (For example, the
UI’s shown in figure 2 obviously represent only one of
the essentially unlimited number of possible Swing UI
designs independent UI designers can create for these
services. A different designer could use a different set
of colors, widgets, and metaphors such as drag-and-
drop or spatial widget positioning.) This can be quite
disconcerting, particularly for the more complicated
services.

In this paper, we describe an architecture for ad-hoc in-
teraction that provides mechanisms to address the above is-
sues. The notable contributions of this architecture may be
described as follows:

1. Distribution/administration mechanism: A workspace
can be setup such that the third party UI’s appropri-
ate for the services in that workspace are automatically

procured without manual intervention. Further, this
mechanism allows a set of workspaces to be setup such
the default ad-hoc interaction behavior seen in them is
similar.

2. Personalization mechanism: If a user likes a UI re-
turned in a workspace, she can “bookmark” this UI.
From then on, if she requests a UI for a service of the
same type (even in adifferentworkspace), she is re-
turned the familiar UI. Of course, where applicable,
the UI must customize itself to the local workspace.
For example, if the user bookmarks the light UI shown
in figure 2(C), and requests a light UI in a different
workspace, the returned UI looks similar but reflects
the number and positions of lights in that workspace,
perhaps as shown in figure 2(D). Effectively, once a
user bookmarks a UI, she “carries” this favorite famil-
iar UI with her, wherever she goes.

These two mechanisms are independent (i.e., neither is a
substitute for the other). Also, either mechanism is useful
by itself and can be provided independent of the other.

The rest of the paper is organized as follows. In section
2, we present the architecture. We raise several significant
policy issues in section 3 and also present our current solu-
tion approaches to these issues. The prototype implemen-
tation is discussed in section 4, while section 5 discusses
some alternative approaches to the problem. Section 6 de-
scribes related research.

2 Architecture

We extend an existing ad-hoc interaction system –
specifically, the ICrafter system we proposed in [10] – to
provide mechanisms for distribution and personalization.
We first review the basic ICrafter architecture, which is
shown in figure 3(A).

2.1 Background

In ICrafter, a user can use one of many supported UI lan-
guagerenderers(such as web browser, Swing renderer etc)
for ad-hoc interaction. Consider a user wishing to control
lights using Java Swing (as shown in figure 2):

1. When the user requests a UI for lights, the Swing ren-
derer back-end requests a well known service called
the interface manager (IM) for a “SwingLightService
UI”, assuming that the lights service exports the (pro-
grammatic) interfaceLightService.

2. The IM consults a localgenerator repositoryfor a
LightService Swing UI generator.

3. The located SwingLightService generator is executed
(at the IM) to produce Swing UI (which is described in
a home-grown markup language called SUIML).

4. The resulting Swing UI is returned to the Swing ren-
derer and is rendered by the latter.

It helps to clarify the distinction between a “generator”
and a “UI” in our terminology. In general, a generator is
written for a service type (such asLightService) andwhen
executed at the IMfor a specific instance (such as the lights
in room 104) generates a UI for that instance. Any user
action on the resulting UI causes the corresponding opera-
tion being performed on that instance. As discussed in [10],
where applicable, a generator may also customize the gen-
erated UI to the target workspace by dynamically accessing
the workspace context information (such as physical geom-
etry). For example, figures 2(C) and 2(D) represent two
different UI’s produced by thesame generator. As an im-
portant special case, a generator can also be specific to a
particular service instance, in which case it is essentially a
UI.

Finally, as shown in the figure, the repository contains
two types of generators: generators registered by the ser-
vices (service-registered generators) and generators regis-
tered by a local admin (local generators).

2.2 Extended architecture

We extend the basic ICrafter architecture in two ways.
(The extended architecture is shown in figure 3(B).) First,
we allow the IM to be configured to automatically look for
suitable generators in aremote generator repositoryin ad-
dition to the local repository. The remote repository is es-
sentially a web service operated (for example) by the ven-
dor shipping the IM software. (Ideally, there should be a
hierarchy of such repositories to ensure scalability, avail-
ability and efficiency, although this is not the case with our
current implementation.) The IM automatically downloads
various UI language generators (HTML, Swing, etc) for the
local services from the remote repository and caches them.
Thus, the generator repository now also contains genera-
tors downloaded from the remote repository in addition to
the service-registered and local generators. Only generators
applicable to the locally running services are ever down-
loaded. For example, if no lights service is running locally,
no lights generator will ever be downloaded.

Second, after making a request for the UI of a service,
the user can “bookmark” the returned UI. When a UI is
bookmarked, thecorresponding generator(that generated
the UI) gets added to the set of “favorite generators” on the
user appliance. (What gets added is only a description of
the generator and the URL of the generator, not the genera-
tor itself.)

With these two additions, the UI request life cycle of sec-
tion 2.1 changes as follows:

1. When the user requests a UI for lights, the Swing ren-
derer back-end requests the IM for a “SwingLightSer-
viceUI”. This request also contains the favorite gener-
ators of the user.

2. The IM selects a SwingLightService UI generator
from among the favorite generators, generators in the
local repository and the generators available at the re-
mote repository. (If there are multiple SwingLight-
Service generators, the “best” generator is chosen
based on the prevailing policy.)

3. The located SwingLightService generator is executed
(at the IM) to produce Swing UI.

4. The resulting Swing UI is returned to the Swing ren-
derer and is rendered by the latter. If the user likes
thus UI, she can bookmark it, causing the correspond-
ing generator to be added to the user’s favorites.

Not all UI’s can be bookmarked as described above. In
particular, a generator written specifically for a service in-
stance, which hard-codes information specific to that in-
stance, cannot be applied to a different service instance.
Thus, only non instance-specific UI’s should allow them-
selves to be bookmarked. For example, if the generator
for the lights UI in figure 2(C) was written specifically for
that workspace and hard-coded the number and locations of
lights, it should not allow itself to be bookmarked. On the
other hand, if the generator was written in a generic fash-
ion, and uses room geometry information at runtime to cus-
tomize the generated UI, the resulting UI can allow itself to
be bookmarked.

Several contentious issues remain to be addressed in this
architecture. However, before addressing them, we explain
the workings of the architecture with a simple (hypotheti-
cal) example scenario.

2.3 Example scenario

Consider two buildings 1 and 2, each with several
workspaces containing smart printers. Building 1 contains
workspaces of two types: 1H and 1C. Workspaces of type
1H contain an HP printer while workspaces of type 1C con-
tain a Canon printer. Building 2 also contains two types
of workspaces: 2C and 2E. Workspaces of type 2C con-
tain a Canon printer, while workspaces of type 2E contain
an Epson printer. Finally, all workspaces in building 1 are
configured to obtain generators from remote repository R1,
while all workspaces in building 2 are configured to obtain
generators from remote repository R2.

(A) (B)

Figure 3. (A) Basic ICrafter architecture. (B) Extended ICrafter architecture. Notice the three additions
in (B): remote generator repository, favorite generators on the user appliance, and the downloaded
generators in the generator repository.

The HP and Canon printers export the (programmatic)
interfacePrinter , while the Epson printer exports the (pro-
grammatic) interfaceEpsonPrinter. Also, EpsonPrinter
is not a subinterface ofPrinter , nor are they derived from a
common parent interface. The HP and Epson printers ship
with Swing UI generators GH and GE respectively, while
the Canon printer does not ship with any. Note that GH uses
the interfacePrinter to invoke operations on the printer. On
the other hand, GE uses the interfaceEpsonPrinter.

We will now illustrate using this example scenario how
the architecture works: As shown in figure 4, Jane walks
into a 1C workspace with her Swing renderer enabled ap-
pliance and accesses the printer using the Swing renderer.
She is returned UI(GP1), i.e., the UI generated by GP1.
She bookmarks this UI and GP1 (or rather, a description
of GP1) is added to the favorite generators on her appli-
ance. Sometime later, she enters a 1H workspace and ac-
cesses the local printer. This time, she is returned UI(GP1)
again even though the local printer (which is a HP printer)
exports the generator GH. Similarly, she sees UI(GP1) in
2C workspaces also. (Note that had she not had GP1 book-
marked, she would have seen a generator downloaded from
R2 in the 2C workspaces.)

Jane now walks into a 2E workspace (as shown in fig-
ure 5) and accesses the local printer. This time, she is re-
turned UI(GE2) and not UI(GP1). This is because, GP1
expects the interfacePrinter while the local printer ex-
ports theEpsonPrinter interface. (Here we assume the
downloaded generator GE2 is preferred by the IM over the

service-supplied generator GE. We discuss precedence is-
sues in section 3.) Suppose she bookmarks this UI too,
causing GE2 also to be added to the favorites. Then, for
all future printer accesses, she receives UI(GP1) whenever
the local printer exports thePrinter interface and UI(GE2)
whenever the local printer exports theEpsonPrinter inter-
face.

3 Policy Issues

Several non-trivial policy issues stem from the archi-
tecture presented in the previous section. In this section,
we raise these issues and explain how our current imple-
mentation approach resolves them. Since we do not yet
know which policies are optimal, we have initially chosen
to implement simple ones.

Generator selection policy: In addition to the generator
matching logic (explained in [10]), the IM must also imple-
ment a selection policy. This is because multiple generators
could possibly match at the IM for a given UI request. In
such cases, the IM needs a policy to select the “best” gener-
ator.

We currently implement a two-level policy. The first-
level policy determines the precedence order among the
four types of generators: favorite, service-registered, local,
and downloaded. The precedence order we use is: favorite
> local> downloaded> service-registered. We also allow
the user to specify whether favorite generators should

(A) (B)

Figure 4. (A) Jane about to walk into a 1C workspace with her Swing renderer enabled appliance X1.
The local repository initially does not contain any Swing generator suitable for the Canon printer,
nor does X1 contain any favorites. (B) Jane accesses the printer. The IM downloads and caches GP1
from the remote repository and returns UI(GP1), which Jane bookmarks. As Jane walks out, GP1 is
in both the local repository and X1’s favorites.

be considered by the IM. Any UI request sent to the IM
contains a boolean field termed “check favorites”. If this
field is not set, the IM does not consider the favorites during
generator selection. The second-level policy determines the
precedence order within each group. This policy randomly
picks one of the matching generators.

Security: Since the generators include code, the system
has to guard against malicious generators. Techniques such
as code checking, sand-boxing, and/or signatures can be
used to protect against malicious generators.

We use signatures to ensure safety. Thus, when the IM
downloads a generator, it checks if the generator is signed
by a trusted principal. Unsigned generators are rejected.
The current trust policy is simple: the only trusted principal
is the remote repository. With this policy, there is no need to
configure each IM with a set of trusted principals. Rather,
the trust administration is delegated to the remote reposi-
tory. Of course, we do need a policy at the remote repos-
itory to determine the trusted principals. If the provider of
a generator is trusted according to this policy, the remote
repository signs the generator with its key.

Our current policy either fully trusts a generator (that
is, allows access to all resources) or fully rejects it. A
more flexible policy would allow the specification of the
resources a generator may access in the policy. Much
research has gone into the mechanisms needed for sup-
porting such policies. Specifically, for Java (which is

our implementation platform), Wallach et al. [14] present
several mechanisms for mobile code security. The Java 2
platform from Sun [6] provides a stack introspection based
mechanism. A natural extension to our implementation is
to allow “full policy specifications” for generators at the
remote repository, which can also be downloaded by the
IM in addition to the generators themselves.

Favorites management: The favorites on the user appli-
ance need to be jointly managed by the various renderers.
This can be problematic, especially for “legacy” render-
ers such as web browsers, which we do not own the code
for. Another issue is the transmission of favorites to the IM,
for which there are at least two options. First, the favorite
generators relevant to a request (if any) can be selected at
the appliance side itself. Alternatively, the entire list of fa-
vorites can be included in the request to the IM.

Our current approach is to distribute the favorites man-
agement among the different renderers. For example, a web
browser only manages the HTML generators among the
favorites, while a Swing renderer manages the Swing gen-
erators among the favorites. We have so far implemented
“favorites management” only for web browsers. Also, for
simplicity, we include all the favorite generator descriptions
in a request to the IM whenever the “check favorites” field
is set to true. Note that a generator description includes the
URL where the actual generator resides.

(A) (B)

Figure 5. (A) Jane about to walk into a 2E workspace with her appliance X1. The local repository
initially contains the Swing generator GE registered by the Canon printer, and X1 contains one
favorite generator, GP1. (B) Jane accesses the printer. The IM downloads GE2 from the remote
repository and returns UI(GE2), which Jane bookmarks. As Jane walks out, GE2 is in both the local
repository and X1’s favorites.

Active vs. passive remote repository:The remote repos-
itory can contain varying levels of “smartness”. On the one
hand, a passive remote repository simply serves as a list-
ing of all available generators. On the other hand, an active
remote repository supports queries of the form “return all
Printer HTML generators” etc. As the remote repository
logic becomes more complicated, the sustainable request
rate diminishes.

We have currently adopted the passive remote repository
approach. Thus, the remote repository is essentially just
a HTTP-accessible listing of all the available generators.
As shown symbolically below, this listing only contains the
generator descriptions and locations (but not the generators
themselves):

.....
G1: Interface: org.service.Printer

Output Language: WML
Location: http://repository.org/G1.jar

G2: Interface: com.epson.EpsonPrinter
Output Language: HTML
Location: http://repository.org/G2.jar

G3: Interface: org.service.LightService
Output Language: Swing
Location: http://repository.org/G3.jar

.....

To enable efficient searching, each IM downloads
and caches this listing, and then searches for the “rel-
evant” generators. For example, an IM in a workspace

containing only one service – a printer, which exports
the interfaceorg.service.Printer – only downloads the
generator G1 from the repository shown above. (The
com.epson.EpsonPrinter generator G2 isnot down-
loaded.)

Pro-active vs. on-demand downloading:In on-demand
downloading, the IM checks the remote repository only
when processing a UI request from an appliance and down-
loads any generators relevant to the request. In pro-active
downloading, as soon as a new service is added to the
workspace, the IM downloads all the generator(s) for that
service. With either approach, the downloaded generators
are cached for future use.

Our current implementation uses an on-demand down-
loading strategy. As mentioned earlier, the remote reposi-
tory is passive. The overall strategy is as follows: For the
first request, the IM downloads and caches the generator
listing from the remote repository. The generator listing at
the remote repository can change over time. Thus, while
handling subsequent requests, the IM downloads the listing
again if the cached listing becomes “stale”. The listing is
considered stale after a configurable “timeout period” has
expired since the most recent download time.

4 Implementation status

While all the components of the system have been im-
plemented, we have not deployed it in our testbed environ-
ment yet. Also, the distribution/administration architecture
is fairly general, but the personalization part has only been
implemented for web-based UI’s.

Figure 6 illustrates how the prototype is intended to func-
tion. Jack walks into the workspace with an appliance con-
taining a web browser. He then enters a well-known URL
into the browser. This URL represents the “bootstrap” user
interface, and lists all the services currently running in the
space as shown in figure 6(A). Notice the “check favorites”
checkbox, which allows him to indicate if his favorite gen-
erators should be considered. If this box is checked, the
back-end servlet extracts the favorite generator descriptions
from the “favorites cookie” and includes them in the UI re-
quest sent to the IM. Jack selects the lights service, and the
returned UI is shown in figure 6(B). Notice the bookmark
button at the bottom of the page. Jack clicks this button,
and the back-end servlet extracts the generator description
from the hidden fields and adds them to the favorites cookie.

5 Discussion

In this section, we discuss various related and alternative
approaches to service interaction.

5.1 Planned interaction

Mobile users can also interact with a service in what
we call “planned interaction mode”, where users are them-
selves responsible for procuring the appropriate applica-
tion/UI to interact with the service in advance of using the
service. The means for procurement can vary. For exam-
ple, to interact with a printer, a user can install a printer
client application on her appliance, which discovers the lo-
cally available printers using a discovery protocol and en-
ables printing to them. Another option for the user is to lo-
cate a “printer client applet” on the web that does the same.
Although no installation is needed with an applet, the user
becomes responsible for trust management.

The distinction between the ad-hoc and planned modes
is important, but can be subtle. For example, if a user lo-
cates and loads a printer client applet herself, we label this
planned interaction. However, if the same applet is up-
loaded to the user on-demand by the system when she re-
quests the UI for a particular printer, we consider it ad-hoc
interaction.2

2In reality, the same printer applet cannot typically be used for both
modes of interaction. An applet used for planned interaction is usually
designed as a “stand-alone” applet, while an applet used for ad-hoc in-
teraction is designed as an “attachable” applet, so it can be bound to the

The main advantage of planned interaction is that the
user experience is predictable, since the users themselves
install/locate chosen UI’s. However, the very fact that users
need to install/locate UI’s themselves renders this mode im-
practical in several situations. Also, locating a suitable UI
gets further complicated for the end-user in the absence of
universal agreement on service interfaces. For example,
if the printer client applet expects thePrinter interface,
while the workspace contains only an Epson printer, then
the applet wouldn’t discover the printer and consequently,
the user would be unable to print. Ad-hoc interaction sys-
tems fare better in this regard since the system would return
anEpsonPrinter-compatible UI to the user.

Finally, planned and ad-hoc interaction are complemen-
tary. In other words, pre-installed applications or known
applets can be used where available. For the other services,
ad-hoc interaction can be used.

5.2 Smart appliances, smart middle, or smart ser-
vices?

In principle, the functionality we have placed in the IM
can be moved to the user appliance-side or the service-side,
or can perhaps be split across the appliance-side and the
service-side. This represents the quandary of “smart client,
smart server, or smart middle?”, which often recurs in net-
work systems. The approach we have described in this pa-
per may be considered as the smart middle approach. The
other approaches are briefly described below:

• Smart service: In the smart service approach, the ser-
vices would be written such that they automatically
look for UI’s in a remote repository (possibly main-
tained by the service vendor) and return them to the
user.

• Smart appliance: In the smart client approach, the ap-
pliance software would automatically look for UI’s in
a remote repository, if no suitable UI is found among
the favorites or provided by the service.

These approaches arenotmutually exclusive. Also, each
has its own disadvantages. The smart middle approach has
the disadvantage of requiring a third party (IM), which may
not be feasible in all environments. On the other hand, the
IM also provides a central “control point” for changing the
ad-hoc interaction behavior of the entire workspace without
having to make changes at each service/appliance.

The smart service approach does not generalize well for
multi-service UI’s. (With this approach, it’s not clear where
multi-service UI’s are maintained, or where a user queries
when the UI for a group of services is desired.)

particular printer (for which the UI was requested) before being returned
to the user.

(A) (B)

Figure 6. (A) Bootstrap UI showing all services in a workspace. Notice the “check favorites” checkbox
(B) Lights UI. Notice the “add to favorites” button. Only instance-independent generators should
contain this button.

The smart appliance approach has the disadvantage of
requiring more functionality on the appliance, which im-
plies that this functionality has to be developed and ported
for every appliance type and platform. Besides, there is
reluctance among end-users to install software (especially
evolution-prone software). In contrast, with both the smart
service and smart middle approaches, minimal or no instal-
lation may be necessary on the appliance. For example, for
web-based UI’s, our current approach requires only a web
browser on the appliance.

6 Related work

Software frameworks for future office, home, and labora-
tory environments are being investigated by several research
and industry groups such as Microsoft EasyLiving [3], Sun
Microsystems’ Jini [2], Oxygen [4], Aware Home [1], and
one.world [7]. In this context, several service frameworks
have been proposed: Jini [2], UPnP [5], Hodes et al. [8],
Roman et al. [11], etc. Most of these frameworks allow ad-
hoc service interaction. However, none of these systems re-
ally address the distribution/administration or personaliza-
tion problems.

Hodes et al. [8] briefly discuss (but do not provide a so-
lution for) the problem of adapting an existing UI to work
with a service exporting a different programmatic interface.

Spreitzer et al. [12] point out some limitations in current
programming language interfaces with respect to evolvabil-
ity and propose the use of flexible types. Techniques for
evolvable interfaces and adapting existing UI’s to work with
different service interfaces are very relevant but comple-
mentary to the work presented in this paper.

The Mobisaic system [13] extends the web with “active
documents” that can react to changes in the user’s context.
This system is specifically designed for the web and is also
primarily meant for information browsing rather than ser-
vice control. Also, it is difficult to implement generators as
active documents since the latter only provide environment
variables for customization. (We use an embedded scripting
language in our current implementation of generators.)

Auto-update features are becoming increasingly popu-
lar in commercial operating systems as well as applications
such as browsers and media players. In principle, auto-
matic downloading of generators by the IM is similar to
the automatic downloading of needed plug-ins or codecs by
browsers and media players respectively. However, there
are differences both at the mechanism-level and what the
mechanism enables:

• When a new generator is downloaded, it changes the
behavior of the workspace, rather than any specific ma-
chine.

• The distribution architecture also effectively facilitates

centralized administration of all workspaces in a single
administrative domain.

• Matching generators is more complicated than match-
ing plug-ins and this affects the mechanism design.

7 Conclusions and Future Work

In this paper, we proposed an architecture that addresses
some of the deficiencies in existing ad-hoc interaction sys-
tems. Specifically, the architecture we propose provides the
following mechanisms:

1. Distribution/administration mechanism: A workspace
can be setup such that the third party UI’s appropri-
ate for the services in the workspace are automatically
procured without manual intervention. Further, it can
be ensured that the ad-hoc interaction behavior in a set
of workspaces is similar.

2. Personalization mechanism: A UI returned on-demand
during ad-hoc interaction with a service can be “book-
marked” by the user. Once a favorite UI is book-
marked, it is automatically re-used for future interac-
tions (wherever applicable).

Much work remains to be done to improve the system.
In particular:

• In addition to the mechanisms themselves, effective
policies are also needed to produce the best results with
minimum manual intervention. While we have cur-
rently implemented the simpler policies, more experi-
ence and experimental evidence is needed to determine
the “best” policies.

• We are exploring the possibility of hierarchically orga-
nized repositories for efficient and scalable generator
distribution.

• For true personalization, the favorite generators need
to be remembered for each user across all the appli-
ances she may use. We are investigating efficient and
scalable mechanisms for enabling this.

Acknowledgements: We are grateful to Ed Swierk and
Guido Appenzeller for reviewing earlier drafts of this paper
and providing helpful suggestions for improvement. Spe-
cial thanks are due to Brian Lee and Susan Shepard for their
help in the design and implementation. Suggestions of the
anonymous reviewers helped improve this paper, and we
are particularly grateful to them for their valuable insights
toward future directions to pursue in this work.

References

[1] G. D. Abowd, C. G. Atkeson, A. F. Bobick, I. A. Essa,
B. MacIntyre, E. D. Mynatt, and T. E. Starner. Living Labo-
ratories: The Future Computing Environments Group at the
Georgia Institute of Technology. InCHI’00 Proceedings,
The Hague, Netherlands, April 2000.

[2] K. Arnold, B. O’Sullivan, R. W. Scheifler, J. Waldo, and
A. Wollrath. The Jini Specification. Addison Wesley, 1999.

[3] B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. A. Shafer.
EasyLiving: Technologies for Intelligent Environments. In
P. J. Thomas and H.-W. Gellersen, editors,HUC, volume
1927 ofLecture Notes in Computer Science, pages 12–29.
Springer, 2000.

[4] M. Dertouzos. The Oxygen Project.Scientific American,
282(3):52–63, August 1999.

[5] U. Forum. Universal Plug and Play.http://www.upnp.
org .

[6] L. Gong. Java 2 Platform Security Architecture.http:
//java.sun.com/j2se/1.3/docs/guide/
security/spec/security-spec.doc%.html .

[7] R. Grimm, J. Davis, B. Hendrickson, E. Lemar, A. Mac-
Beth, S. Swanson, T. Anderson, B. Bershad, G. Borriello,
S. Gribble, and D. Wetherall. Systems Directions for Per-
vasive Computing. InProceedings of the 8th Workshop on
Hot Topics in Operating Systems, pages 147–151, Elmau,
Germany, May 2001.

[8] T. D. Hodes and R. H. Katz. A Document-based Frame-
work for Internet Application Control. In2nd USENIX Sym-
posium on Internet Technologies and Systems (USITS 99),
Boulder, Colorado, USA, October 11-14 1999.

[9] T. D. Hodes, R. H. Katz, E. Servan-Schreiber, and L. Rowe.
Composable Ad-hoc Mobile Services for Universal Interac-
tion. In Third ACM Conference on Mobile Computing and
Networking (MobiCom 97), Budapest, Hungary, September
1997.

[10] S. R. Ponnekanti, B. Lee, A. Fox, P. Hanrahan, and T. Wino-
grad. ICrafter: A Service Framework for Ubiquitous Com-
puting Environments. In G. D. Abowd, B. Brumitt, and S. A.
Shafer, editors,Ubicomp, volume 2201 ofLecture Notes in
Computer Science, pages 56–75. Springer, 2001.

[11] M. Roman, J. Beck, and A. Gefflaut. A Device-Independent
Representation for Services. InThird IEEE Workshop
on Mobile Computing Systems and Applications (WMCSA
2000), December 2000.

[12] M. Spreitzer and A. Begel. More Flexible Data Types. In
Proceedings of The Eighth IEEE International Workshop
on Enabiling Technologies: Infrastructure for Collaborative
Enterprises (WET-ICE ’99), 1999.

[13] G. M. Voelker and B. N. Bershad. Mobisaic: An Informa-
tion System for a Mobile Wireless Computing Environment.
In First IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA 1994), December 1994.

[14] D. S. Wallach, D. Balfanz, D. Dean, and E. W. Felten. Ex-
tensible Security Architecture for Java. InProceedings of
the 16th ACM Symposium on Operating Systems Principles
(SOSP-16), Saint Malo, France, October 5-8 1997.

[15] M. Weiser. The Computer for the Twenty-First Century.Sci-
entific American, pages 94–100, September 1991.

