
Application-Service Interoperation without Standardized Service Interfaces

Shankar R. Ponnekanti and Armando Fox
Computer Science Dept

Stanford University
Stanford, CA 94305

{pshankar, fox}@cs.stanford.edu

Abstract

To programmatically discover and interact with ser-
vices in ubiquitous computing environments, an application
needs to solve two problems: (1) is itsemantically mean-
ingful to interact with a service? If the task is “printing a
file”, a printer service would be appropriate, but a screen
rendering service or CD player service would not. (2) If
yes, what are the mechanics of interacting with the service
– remote invocation mechanics, names of methods, numbers
and types of arguments, etc.? Existing service frameworks
such as Jini [1] and UPnP [22] conflate these problems—
two services are “semantically compatible” if and only if
their interface signatures match. As a result, interoper-
ability is severely restricted unless there is a single, glob-
ally agreed-upon, unique interface for each service type.
By separating the two subproblems and delegating different
parts of the problem to the user and the system, we show
how applications can interoperate with services even when
globally unique interfaces do not exist for certain services.

1 Introduction

A key problem in ubicomp (ubiquitous computing) en-
vironments is allowing applications to discover and interact
with network services. (By a service, we mean either a de-
vice or a software application that is always available and
accessible over the network by other apps and services.) For
an application to automatically discover and interact with
the services in its local environment, two issues need to be
addressed:

1. I1: Identifyingsemantically compatibleservices: By a
“semantically compatible service”, we mean a service
that meets the needs of the application. For example, if
the task is “printing a file”, a printer service is a com-
patible service, but a screen rendering service or CD

player service is not.

2. I2: Determininginvocation mechanics: Once a com-
patible service is identified, the application needs to
determine the mechanics for invoking various opera-
tions on the service over the network and obtaining the
result (if any). In other words, after a printing applica-
tion has identified a printer, it still needs to know the
exact method name(s) and parameter types for the print
method(s) before printing can be realized.

Today’s ubicomp service frameworks such as Jini and UPnP
“solve” these issues by requiring service vendors and appli-
cation writers to agree on a unique interface standard for
each service type – i.e., a single printer interface, a single
CD player interface, a single projector interface, and so on
for everyservice type. We call this thesingle-standard ser-
vice requirement. With a single standard for each service
type, bothI1 andI2 are easy to handle. ForI1, the applica-
tion simply looks for services exporting the standard inter-
face for the needed service type, and forI2, the application
uses the methods and parameters of this standard interface.
Unfortunately, however, agreement on a single interface for
every service type is unlikely to occur for all services. For a
set of vendors to agree on a standard interface is hard, even
for well-understood services. For example, as noted in [13],
the Jini printer forum required 15 months to announce a
draft of version 1.0 of the printer standard, and it is far
from clear if this will be widely adopted. (The cited source
itself points out that this draft is just a “first step”.) For
newer and less understood services, standardization is even
harder. Very often, standardization occurs through market-
driven consolidation, and such a process can take several
years. Since new services will continue to appear, there will
always be services for which standardization/consolidation
has not yet occurred, if at all.

Thus, we argue that ubicomp frameworks should al-
low interoperation for formulti-standard services– ser-
vice types for which multiple interfaces exist and different
providers may subscribe to different interfaces. For such



multi-standard services, applications under Jini or UPnP
will not discover and interact with a service if the service
exports a different interface, even if the service was actu-
ally semantically compatible. A “solution” of the form “ev-
ery application should be written to understand all the inter-
faces for each service type it requires” is infeasible, because
some of these interfaces may appear after the application
was written, aside from the fact that such a solution places
too much burden on the application programmers.

In this paper, we propose a framework that generalizes
current approaches by allowing interoperation for multi-
standard services. Note that both the issuesI1 andI2 be-
come much harder under multi-standard services, and our
framework addresses these issues as follows:

• For I1, we present techniques to identify related ser-
vices, even in the absence of a single-standard for the
needed service type.

• ForI2, we propose a strategy that allows an application
to interoperate with the service, even when the service
exports a different interface than the one used by the
application.

We are not against standardization per se - after all, stan-
dards such as 802.11 and TCP have had a vital role in the de-
velopment of computer science. However, 802.11 and TCP
do not try to capture and standardize application-specific
semantics, and are not specific to a search service, a book-
buying service, or a printer. Unlike TCP/802.11, Jini/UPnP
also attempt to achieve global agreement on application-
level semantics by standardizing interfaces for each service
type, which is difficult because there are numerous services
and new ones will continue to be developed. The approach
we describe relies on a standardized underlying application-
independent layer similar to Jini/UPnP, but does not require
global agreement at the application level.

Note that frameworks such as UPnP [22], Hodes et
al. [11, 10] and ICrafter [19] allow end-users (as opposed
to software applications) to directly discover and interact
with the available services. Direct end-user control, while
certainly useful, is not enough because functionality more
complicated than the direct control of one or more services
should ideally be provided as a bundled application to end-
users. For example, giving a lecture in a seminar room typi-
cally involves the following functionality: turning on/off the
lights/cameras/displays, recording the audio/video, printing
out slide handouts for the audience, and making effective
use of the multiple displays in the seminar room for dis-
playing the slides. While all these activities can also be
performed by manually controlling each individual service,
it gets clumsy and repetitive. So, this functionality needs be
coded as a lecture service/application that in turn accesses
the light, display, camera, and printer services programmat-
ically. It is in the context of programmatic control by ap-

plications that the issuesI1 andI2, and this paper become
relevant.

A comparison to the Web further clarifies the difference
between end-users accessing the services directly vs. appli-
cations accessing the services programmatically.1 Current
Web services are designed for direct control by end-users,
where each web service exports a UI (a Web form) that is
used by the users to interact with the service. Much like the
ubicomp world, programmatic access through applications
is clearly desirable on the Web too – to enable automation
of repetitive tasks, etc. Industry efforts currently underway
to allow applications/agents to access Web services pro-
grammatically through automated discovery (UDDI [21])
and remote invocation (SOAP/WSDL [23, 24]) also require
solving the exact same issuesI1 andI2. For example, un-
less all current (and future) search service providers such
as Google, Hotbot, AltaVista, etc agree to export an iden-
tical SOAP search interface, a search application written to
a particular search interface will fail to interoperate with all
the search service providers.

The ideas presented here are also relevant to Web ser-
vices, and in general to any domain characterized by three
aspects:

1. Need for programmatic access: Software applica-
tions (that provide bundled functionality and automate
repetitive tasks etc) need to discover and interoperate
with services.

2. Need for servicesubstitutability: The same application
needs to work with different (compatible) services at
different times. For example, a print application may
need to work with an HP printer in one environment
and a Canon printer in a different environment.

3. Presence ofinteractivity: The application is run inter-
actively by the end-user, and the user is available (if
necessary) for making semantic decisions.

In this paper, we will largely focus on the ubicomp do-
main, but the example service we describe (search service)
in some detail later is relevant for both the Web and ubi-
comp contexts. The rest of the paper is organized as fol-
lows. Sections 2 and 3 describe the framework, while sec-
tion 4 presents a prototype implementation. In sections 5
and 6, we survey related work and conclude.

2 Framework

A typical existing framework such as Jini relies on
single-standard services and works as follows: Services ad-
vertise to local registries the interfaces implemented by the

1For our purposes, the distinction between a Web service (such as Ama-
zon) and a ubicomp service (such as a printer) is that the scope of the latter
is limited to the local environment.



service as well as attributes describing various features of
the service. To determine compatible services, applications
search for services exporting the standardized interface for
the needed service type. In addition to the interface, ap-
plications also use the attributes advertised by services to
choose the service that is most appropriate for the task at
hand. The application then uses the operations in the stan-
dard interface to interact with the service.

Below, we explain how applications perform these func-
tions even for multi-standard services in our approach. In
the framework to be proposed, we assume:

1. Standardized application-independent mechan-
ics: remote invocation framework and discov-
ery/advertisement protocols.

2. Descriptions: Service advertisements include a
human-understandable natural language description of
the service supplied by the service author or the local
admin.

The first assumption is consistent with most existing frame-
works. A few existing frameworks also provide human-
understandable service descriptions.

2.1 AddressingI1: Semantic Compatibility

In general, fully automated discovery and determination
of the target services for an application requires that all rel-
evant aspects of the user intent be codified and expressible
by the application using the service attributes. In reality,
however, user intervention may often be needed because:

• An application designer may not have taken into con-
sideration one or more relevant aspects because they
were hard to conceive in advance. For example, in the
days prior to flat screen TV’s, an application designer
may not have anticipated this feature.

• When no available service matches all the needed at-
tributes, the application may not be able to choose
from among the available services. For example, sup-
pose that a user wants both color printing and a cer-
tain resolution, and that printer 1 provides color print-
ing but not the needed resolution, while printer 2 pro-
vides the needed resolution but only gray-scale print-
ing. Which printer to select (if any) depends on the
user intent, and cannot be automated by the applica-
tion.

Thus, even for single-standard services, the application
should always provide the user a “manual-select” mode to
override the automated selection process and select the ser-
vice(s) manually. We generalize this strategy and apply it to
multi-standard services as follows:

1. An application first attempts to discover services ex-
porting the interface known to the application.

2. If the application discovers such a service, it can sim-
ply use the discovered service and user intervention
is not triggered, assuming that user has enabled the
“auto-select” mode.

3. On the other hand, if the application fails to discover a
service that exports the known interface, or if the appli-
cation is running in the manual-select mode, the appli-
cation displays a list of all the available services along
with their advertised (human-understandable) descrip-
tions, and requests the user to select the appropriate
service to interact with.

Relying on users to select semantically compatible ser-
vices is not unique to our work. In particular, the SpeakEasy
project [4] at Xerox also uses this approach. However,
they do not address the multi-standard service interopera-
tion problem. Instead, they still use single-standard services
but advocate that applications be written to use domain-
independent interfaces (such as generic data exchange in-
terfaces) rather than domain-specific interfaces (such as
print interface and display interface). We do not man-
date that the service standards be domain-independent, even
though domain-independent interfaces can be easily accom-
modated into our framework (as described in section 3.3).
In addition, we also present important techniques in section
3.2 for improving the basic approach outlined here. (Dis-
playing the list of all the locally available services is clumsy,
especially when the environment contains a number of ser-
vices.)

2.2 AddressingI2: Invocation Mechanics

The challenge is to achieve interoperation in the case
where the user identifies a compatible service but the ser-
vice exports a different interface (sayY ) than the one
known to the application (sayX). Fortunately, we can
leverage a wealth of existing techniques and approaches to
deal with this issue. First, as per the well known adapter
design pattern [6], anadaptercan be written from interface
X to interfaceY that implements operations ofX using
Y . However, in our case, interoperation has to occur on-
the-fly, and we cannot assume that the end-user will supply
an adapter. However, if there exist repositories where pro-
grammers have registered such adapters, the application can
use mobile code technology to dynamically locate and load
such adapters. Henceforth, we will refer to a repository of
adapters as aglue directory.

A key observation is that transitive chaining of adapters –
an X-Y adapter and a Y-Z adapter can be chained to obtain
a “composite” X-Z adapter – implies that we do not need



N ∗(N−1) adapters to allow interoperation betweenN dif-
ferent interfaces. In the best case, we only need2 ∗ (N − 1)
handwritten adapters to allow for interoperation betweenN
interfaces, which is only two adapters per interface. To rep-
resent such chaining, we introduce some terminology be-
low:

• Stub: A stub IS exports interfaceI and implements
the operations ofI by performing operation invoca-
tions over the network on a serviceS exporting the
interfaceI. The interfaceI is known as the source
interface ofIS.

• Adapter: An adapterIAJ exports the interfaceI, and
uses the interfaceJ to implement the operations ofI.
The interfaceI is referred to as the source interface of
the adapter, while the interfaceJ is referred to as the
target interface.

• Proxy: A proxy IPJ is a collection of adapters
and stubs that exports the interfaceI but uses a ser-
vice exporting interfaceJ to implement the opera-
tions of I. A proxy can be obtained by chaining
one or more adapters and a stub. For example, the
sequenceIAI1 I1AI2 . . . Im−1AJ JS, containingm
adapters followed by a stub, represents a proxy from
I to J .

In the general case, we allow an adapter to have
more than one target interface. For example, an adapter
IAJ1,J2,...,Jn

implements the operations ofI using the in-
terfacesJ1, J2, . . . , Jn. This implies that the proxy may be
a tree (instead of a linear chain) of adapters and stubs.

The notion of chaining format converters has been stud-
ied in data transformation as in TOM [17] and data type
compatibility based service composition frameworks such
as CANS [5] and Paths [14]. However, in our case, chain-
ing is based on interfaces, and not data types. Input/output
data type based chaining has limited applicability because
it can only be applied for components whose behavior can
be modeled as consumers and/or producers of data. On
the other hand, interfaces can be used to model arbitrary
component behaviors, and thus interface-based chaining has
much wider applicability.

2.3 Application-level vs Application-independent
Standards

Note that although our approach allows interoperation
for multi-standard services, it requires additional standard-
ization for locating and loading stubs and adapters. It may
appear that all the framework does is to move standardiza-
tion from one place to another. However, there is a crucial
difference: While service standards involve standardization

of application-level semantics, locating and loading stubs
is application-agnostic. Widely deployed existing standards
such as TCP, HTTP and XML do not try to capture and stan-
dardize application-specific semantics. Application-level
semantics are much harder to standardize because:

• Hundreds of applications can be built atop SOAP and
HTTP. Standardization of HTTP and SOAP is a one-
time effort, but standardizing the specific SOAP inter-
faces for each type of application is a daunting task.
Web service providers such as Google and Amazon
have unilaterally announced their SOAP interfaces,
and there is little reason to believe that other search
and book sales providers will adopt Google and Ama-
zon SOAP interfaces, all the more if other providers
become dominant in the years to come.

• Much like other technologies, new services can be ex-
pected to go through a lifecycle. Multiple standards are
likely to exist during the initial years, and standardiza-
tion or market-driven consolidation could occur over a
period of time. At any point in time, there will always
be services at different points in the lifecycle, since
new types of ubicomp and web services will continue
to be introduced. Thus, multi-standard services are al-
ways likely to exist.

• Application semantics are often tied to vendor inno-
vations and their value propositions. New application
features are often introduced independently by differ-
ent vendors and can only be standardized over a period
of time.

3 Framework Details

In this section, we further develop the framework and
address several issues in greater detail.

3.1 Lossy Adapters

An adapter may belosslessor lossy. A lossless adapter
XAY provides a valid and complete implementation of in-
terfaceX (as perX ’s specs), while a lossy adapter either
does not provide some of the functionality ofX (since it is
not supported byY ), or results in side-effects not intended
by interfaceX. If a programmer certifies an adapterXAY

as lossless (much as a programmer certifies a native imple-
mentation as conforming to interfaceX), then [theXAY

adapter + a service implementingY ] may be considered a
“native implementation” ofX that usesY as a third-party li-
brary/service. After all, a native implementation could also
use third-party libraries or services. In general, we leave it
to the discretion of the programmer to determine whether a
lossless adapter can be written, and if not, if a useful lossy



adapter can be designed. With lossy adapters, the key is
to allow an application to detect the nature of the loss in
functionality (ideally, before an operation is invoked), so it
can adapt its behavior suitably such as by disabling some
widgets in its UI or by notifying the user.

One strategy to facilitate the detection of loss of func-
tionality is require that all stubs and adapters provide
a method isSupported(methodname, param-
name) . This method is not the same as reflection, but is
supposed to returntrue if the method and parameter have
been implemented completely by this adapter, and return
false otherwise. In particular, a lossless adapter should
always return true when isSupported is invoked
with any methodname and parameter. On the other hand,
a lossy adapter should returnfalse for those methods
and parameters that are not implemented by the adapter.
Much like a lossless adapter, a stubIS is expected to
always returntrue when theisSupported operation
is invoked, since the stub is interacting with a service that
exportsI, and should hence support all operations ofI. 2

With chaining, an adapter cannot determine by itself if
a method and parameter (m,p) can be supported, since the
answer may depend on whether the following adapter sup-
ports the methods needed to implement (m,p). However,
this issue can be resolved cleanly by using a “recursive”
strategy – an adapter can use theisSupported method
of the target interface to implement theisSupported
method of the source interface. For example, if an adapter
XAY implements an operationfoo(p1) of X using the
methodsbar(p2) and baz(p3) of Y, then the adapter
should return true forisSupported(’foo’,’p1’)
iff the following adapter (or stub) in the chain re-
turns true for bothisSupported(’bar’,’p2’) and
isSupported(’baz’,’p3’) . This “recursion” finally
terminates at the stub.

Note that theisSupported mechanism as described
above does not work well when an adapter only partially
supports a method and parameter. An obvious extension is
to allow theisSupported method to returnpartial in
addition totrue andfalse , but we are exploring a more
systematic solution.

3.2 Techniques for Automated Service Selection

The strategy for selecting compatible services described
in section 2.1 works in principle, but is clumsy in practice.
Leaving the problem of selecting compatible services en-
tirely to the end-user is not desirable since it places too
much burden on the users. In particular, consider a user

2Some interfaces could specify certain methods and parameters as op-
tional, in which case the stub can query the service using the appropriate
service-specific mechanism to determine which of the optional methods
and parameters are supported.

running a print application that expects services exporting
printer interfaceP1. When discovery fails for interfaceP1,
the solution described in section 2.1 simply displays a list
of all services in the environment – lights, projectors, doc-
ument search services, audio/video players, etc – many of
which are completely unrelated to the print service. The
list shown to the print application user should preferably
show only “related” services, such as printers exportingP1

or other print interfaces. In the absence of single-standard
services, we apply the following strategy to automate the
selection of “related” services:

• An application requiring interfaceI first searches for
services exporting interfaceI.

• If the above fails, the application searches for all ser-
vices that export any interfaceJ such that there exists
a proxyIPJ . This implies that there exists a sequence
of adapters and stub from interfaceI to interfaceJ ,
as per the proxy definition of section 2.2. We refer to
such services asproxy-related services.

Further improvements are possible. In particular, if
the service selections chosen by the user are cached on a
per-environment basis by an application, user intervention
would be needed only the first time the application is run
in a new environment. The application can allow the user
to simply reuse the selections made during the first run for
further runs in the same environment. This strategy can also
applied across users: If there exist a large number of proxy-
related services, selections chosen by fellow users can be
prioritized.

3.3 Composition and Domain-independent Inter-
faces

In addition to interoperation, the approach described in
this paper also enables composition scenarios where an in-
terface can be realized using two or more other interfaces.
For example, consider an application that uses a copier in-
terface running in an environment that doesnot contain a
copier, but contains a scanner and a printer. With our frame-
work, the copier application can still function in the said
environment by dynamically loading an adapter that imple-
ments the copier interface using the printer and scanner in-
terfaces. As another example, in an environment lacking a
printer, printing can be achieved by utilizing an online fax
service and a local fax machine.

Besides composition scenarios, adapter-based chaining
also accommodates domain-independent interfaces. As
noted earlier, the proponents of the SpeakEasy [4] project
advocate that applications be written to use domain-
independent interfaces (such as data exchange interfaces)
rather than domain-specific interfaces (such as print inter-



Figure 1. Implementation block diagram of the
system.

face and display interface). We do not necessitate that ap-
plications only be written to domain-independent interfaces,
since this restricts the automation of domain-specific fea-
tures such as print attributes. On the other hand, domain-
independent interfaces can be incorporated into our frame-
work by creating adapters between the domain-specific and
domain-independent interfaces.

To summarize, we believe that a mechanism that allows
for interoperation between distinct but “approximately”
compatible interfaces can be an effective basis for address-
ing a wide variety of interoperation and composition prob-
lems.

4 Implementation

We have implemented a prototype of the proposed
framework in 2000 lines of Java code, excluding third-
party libraries. Due to lack of space, we only highlight the
salient aspects of the implementation here. Figure 1 shows
the implementation block diagram. For scalability, the im-
plementation allows the glue directories to be configured
into a hierarchy, and low-level glue directories can cache
the adapters and stubs obtained from top-level directories,
much like DNS servers. PLL refers to theproxy loader
library – an application library that exports the following
helper methods to ease application programmer’s task:

• getProxy(sourceInterface,targetInterfaces): Lo-
cate and load a proxy. This involves requesting the
glue directory for the proxy, checking the signatures on
stubs and adapters to verify that they are from trusted
providers, and instantiating the component stubs and
adapters. PLL also caches frequently used adapters
and stubs so that further executions are efficient.

• getProxyRelatedServices(interface): Determine all
the proxy-related services for the given interface. Re-
call the definition of proxy-related services from sec-
tion 3.2.

4.1 Algorithm for Proxy Construction

There are two non-trivial algorithmic problems that need
to be solved by our implementation: constructing proxies
and determining proxy-related services.

Our implementation of the proxy construction algorithm
using a rule-based system Jess [12]. Interfaces are modeled
as facts and adapters are modeled as rules that determine
how interfaces can be implemented using other interfaces.
As an example, the adapterIAJ1,J2,...,Jn

is represented as
the ruleJ1, J2, . . . , Jn → I. The problem of constructing
a proxy then reduces to finding a sequence of rules that de-
rive the source interface fact given that the target interface
fact(s). The adapter-stub tree can be constructed from the
derivation sequence.

For simplicity, our initial prototype implements a brute
force algorithm for determining proxy-related services.
Given an interfaceI, this algorithm finds all servicesS,
such thatS exports some interfaceJ and there exists a
proxy IPJ . 3 The brute force algorithm iterates over ev-
ery serviceS in the environment and determines if a proxy
IPK exists for every interfaceK exported byS. The run-
ning time for this algorithm equals the number of services in
the environment multiplied by the time taken for the proxy
construction algorithm of the previous paragraph. Initial ex-
periments measuring the scalability of this algorithm are re-
ported in the extended version of this paper [20] and indi-
cate that the algorithm scales reasonably, although improve-
ments are desirable.

4.2 Example

The prototype was tested with two concrete examples,
one of which is described here: We selected three differ-
ent web search engines: Google, Hotbot, and AltaVista,
and designed programmatic interfaces for each based on
their Web user interfaces. (Even though this service is ac-
tually a web service, it is easy to imagine a similar search
service for meeting/conference rooms that allows search-
ing across all documents and images displayed and ex-
changed in the meeting room.) Note that these interfaces
are fairly involved since they are based on the advanced
search pages of these search engines (e.g.,http://www.
google.com/advanced_search?hl=en ). The ad-
vanced search pages for different search engines support

3Actually, this is a restricted definition of proxy-related services that
only finds services that can be “reached” by linear chain of adapters. A
more general algorithm would also find services that can be reached by
adapter trees, and not just by linear chains.



different subsets and variants of various features such as
search based on patterns (“all the words”, “any of the
words”, “none of the words”, “not the exact phrase”), oc-
currences (word/phrase occurs in title, body, link, etc), do-
mains/regions (.com, .stanford.edu, “Asia”, “Africa”, etc),
languages, file formats, offensive content filtering, date
(pages updated in a given date-range), etc. The actual in-
terfaces are omitted here due to lack of space, but may be
found in the extended version [20].

We then wrote an application that displays a Java Swing
UI to the user and uses the Google interface to actually per-
form the search. We also wrote three stubs, one for each
search engine, and two adapters, a Google-AltaVista and
an AltaVista-Hotbot adapter, and registered them with the
glue directory. The application can interoperate with any of
Google, Hotbot and AltaVista services on-demand. With
the AltaVista service, the application dynamically loads
the Google-AltaVista adapter and the AltaVista stub. With
the Hotbot service, the application dynamically loads the
Google-AltaVista and AltaVista-Hotbot adapters and the
Hotbot stub. With the Google service. none of our mecha-
nisms are triggered.

We are currently implementing other examples such as
printing, where the interfaces are more complicated than the
search example illustrated here, and the initial results are
positive.

4.3 Future Work

An important open issue is selecting the “optimal” tree
when multiple possibilities exist (as when we can chain A-B
and B-C or A-D and D-C when searching for a proxy from
A to C.) Criteria for optimality include degree of lossiness
and performance. With respect to lossiness, trees containing
only lossless adapters are clearly preferable to trees contain-
ing one or more lossy adapters, but choosing among multi-
ple lossy trees is non-trivial. Currently, the lossiness infor-
mation of an adapter can be determined only at runtime –
by instantiating the proxy and calling theisSupported
method. If this information is made available statically, it
can be used for selecting better chains from among multiple
lossy chains.

5 Related Work

The databases and AI communities have expended much
effort [15, 8, 7, 18, 2] on integrating data sources using rela-
tional, object-based, semi-structured and XML-based data
models for integration. These techniques apply for ubi-
comp services that can be modeled using declarative data
schemas (relational, OEM, ODL, or XML) and associated
query languages (conjunctive queries, SQL, Datalog, OQL,

XQuery etc), but do not apply to several other ubicomp ser-
vices where the services only allow access through opaque
procedures (as in the UPnP or Jini frameworks). Services
may choose to allow only limited procedure-based access
for several reasons: they are inherently not data sources,
they are not easily modeled using existing data models and
query languages, or for encapsulation reasons.

Although adapter and wrapper based techniques have
been extensively used for integration purposes in desktop
applications and distributed systems, few systems we are
aware of dynamically locate and loadinterface adapters
directly from network repositories/directories. Jini [1] dy-
namically locates and loads stubs (not adapters) for inter-
operation, while operating systems, browsers and media
players dynamically locate and load drivers, plug-ins, and
codecs, which can also essentially be considered as stubs.

To the best of our knowledge, while chaining of format
converters has been studied with some rigor in TOM [17]
and data type compatibility based service composition
frameworks such as CANS [5] and Paths [14], adapter
chaining for procedural interfaces has not been similarly
studied in the past. For example, we need a different model
of lossiness for interface adapters as opposed to format con-
verters. For interfaces, we need to determine which meth-
ods and parameters are preserved, and we have provisioned
the recursiveisSupported mechanism for this purpose.

Distributed object/component frameworks such as
CORBA, COM/DCOM and .NET associated Web service
standards such as SOAP [23] and WSDL [24] do not (by
themselves) provide substitutability. In other words, if two
different vendors independently chose different CORBA (or
SOAP) interfaces, an application written to one of these in-
terfaces will not interoperate with the other service. Jini [1]
and UPnP [22] add unique interfaces per service type to
component frameworks to provide for substitutability, but
our approach to substitutability is also designed for services
without unique interfaces. A related approach in the Web
context that provides substitutability is the semantic web
initiative [3, 16, 9], where service functionality is marked up
with standard domain-specific ontologies allowing agents
that understand the ontologies to automate the tasks of in-
vocation and composition. The key difference is that we do
not require the development of standardized service-specific
ontologies.

The SpeakEasy [4] project also requires the users to
select compatible services – but we also provide filtering
techniques to automatically identify related services. Also,
they do not address the multi-standard service interopera-
tion problem. Instead, they still use single-standard services
but advocate that the service standards should be domain-
independent. Our framework can accommodate domain-
independent interfaces (as noted in section 3.3), but we do
not constrain that applications only be written to such inter-



faces.

6 Conclusions

Considering that new services will continue to appear,
and given the nature of standardization processes in the real
world, there will always exist service types that do not pos-
sess unique standards – services we call multi-standard ser-
vices. Interoperation for multi-standard services requires
solving two subproblems:

• Finding a compatible service from among the services
in the local environment.

• Actually invoking the operations on the target service
per the interface exported by this service.

We have presented solution approaches for both of these
subproblems: For the first subproblem, our approach first
narrows down the possible targets from all the services in
the environment to a small set of related services, and then
relies on the user to select the desired service from among
the related services. For the second subproblem, our sys-
tem dynamically constructs a suitable proxy by assembling
the needed stubs and adapters. An important issue that oc-
curs in this context is “lossiness”, where an adapter does not
implement all the functionality of its source interface. To
handle this case, we have provisioned theisSupported
method, which allows a lossy adapter to indicate the meth-
ods and parameters that the adapter does not implement. In
conclusion, we have demonstrated that by suitably delegat-
ing different parts of the problem to the end-user and the
system, a feasible solution approach can be obtained for the
problem of ubicomp application-service interoperation for
multi-standard services.

References

[1] K. Arnold, B. O’Sullivan, R. W. Scheifler, J. Waldo, and
A. Wollrath. The Jini Specification. Addison Wesley, 1999.

[2] C. K. Baru et al. XML-Based Information Mediation with
MIX. In SIGMOD 1999, Proceedings ACM SIGMOD In-
ternational Conference on Management of Data, June 1-
3, 1999, Philadephia, Pennsylvania, USA, pages 597–599.
ACM Press, 1999.

[3] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic
web. Scientific American, May 2001.

[4] W. K. Edwards, M. W. Newman, J. Sedivy, and T. Smith.
Recombinant Computing and the Speakeasy Approach. In
Eighth ACM Conference on Mobile Computing and Net-
working (MobiCom 2002), Atlanta, Georgia, September
2002.

[5] X. Fu et al. CANS: Composable, Adaptive Network Ser-
vices Infrastructure. In3rd USENIX Symposium on Internet
Technologies and Systems (USITS 01), San Francisco, USA,
March 2001.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns. Prentice-Hall, 1995.

[7] Garcia-Molina et al. The TSIMMIS Approach to Mediation:
Data Models and Languages.Journal of Intelligent Informa-
tion Systems, 8(2):117–132, 1997.

[8] A. Halevy. Logic-based techniques in data inte-
gration. Logic Based Artificial Intelligence, 2000.
http://www.cs.washington.edu/homes/
alon/site/files/levy-di00.ps .

[9] J. Hendler. Agents and the Semantic Web.IEEE Intelli-
gent Systems (Special Issue on Semantic Web), 16(2):30–37,
2001.

[10] T. D. Hodes and R. H. Katz. A Document-based Frame-
work for Internet Application Control. In2nd USENIX Sym-
posium on Internet Technologies and Systems (USITS 99),
Boulder, Colorado, USA, October 11-14 1999.

[11] T. D. Hodes, R. H. Katz, E. Servan-Schreiber, and L. Rowe.
Composable Ad-hoc Mobile Services for Universal Interac-
tion. In Third ACM Conference on Mobile Computing and
Networking (MobiCom 97), Budapest, Hungary, September
1997.

[12] Java Expert System Shell (Jess).http://herzberg.
ca.sandia.gov/jess/ .

[13] Jini Forum. Report on the Fourth Jini Community Meet-
ing. http://www.javaworld.com/javaone00/
j1-00-jinicomm_p.html .

[14] E. Kıcıman and A. Fox. Using dynamic mediation to inte-
grate COTS entities in a ubiquitous computing environment.
In Handheld and Ubiquitous Computing (HUC 2000), First
International Symposium, Sept. 2000.

[15] A. Y. Levy. Answering Queries using Views: A Sur-
vey. http://www.cs.washington.edu/homes/
alon/views.ps , 1999.

[16] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic Web Ser-
vices. IEEE Intelligent Systems (Special Issue on Semantic
Web), 16(2):46–53, 2001.

[17] J. Ockerbloom. Mediating among Diverse Data Formats.
PhD thesis, Carnegie Mellon University, January 1999.

[18] Y. Papakonstantinou and V. Vassalos. Query Rewriting
for Semistructured Data. InSIGMOD 1999, Proceedings
ACM SIGMOD International Conference on Management
of Data, June 1-3, 1999, Philadephia, Pennsylvania, USA,
pages 455–466. ACM Press, 1999.

[19] S. R. Ponnekanti et al. ICrafter: A Service Framework for
Ubiquitous Computing Environments. InUBICOMP 2001,
pages 56–75, 2001.

[20] S. R. Ponnekanti and A. Fox. Application service inter-
operation without standardized service interfaces. Tech-
nical report, Stanford University, Stanford, CA, Jan-
uary 2003. http://iwork.stanford.edu/pubs/
interop-tr.pdf .

[21] UDDI community. Universal Description, Discovery, and
Integration.http://www.uddi.org .

[22] UPnP Forum. Universal Plug and Play.http://www.
upnp.org .

[23] W3C. SOAP specification.http://www.w3.org/TR/
SOAP/.

[24] W3C. WSDL specification.http://www.w3.org/TR/
WSDL/.


