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Abstract

The dynamism and heterogeneity in ubicomp environ-
ments on both short and long time scales implies that mid-
dleware platforms for these environments need to be de-
signed ground up for portability, extensibility and robust-
ness. In this paper, we describe how we met these require-
ments in iROS, a middleware platform for a class of ubi-
comp environments, through the use of three guiding prin-
ciples - economy of mechanism, client simplicity and lev-
els of indirection. Apart from theoretical arguments and
experimental results, experience through several deploy-
ments with a variety of apps, in most cases not done by
the original designers of the system, provides some valida-
tion in practice that the design decisions have in fact re-
sulted in the intended portability, extensibility and robust-
ness. A retrospective examination of the system leads us
to the following lesson: A logically-centralized design and
physically-centralized implementation enables the best be-
havior in terms of extensibility and portability along with
ease of administration, and sufficient behavior in terms of
scalability and robustness.

1 Introduction

This paper concerns the design of middleware for
ubiquitous computing (ubicomp) environments. While
demarcating ubicomp from mobile and distributed com-
puting, Kindberg and Fox [19] state the following principle:

Volatility principle (VP): The set of participating users,
hardware and software components in a ubicomp environ-
ment is highly dynamic and cannot be predicted in advance.
The sudden departure or arrival of a service, device, or user
should be considered normal operation, not an exceptional
condition or a failure requiring special handling.

The volatility principle has serious implications for ubi-
comp middleware platforms. On larger time scales, volatil-
ity implies that incremental evolution/accretion and there-
fore extreme heterogeneity (in terms of the hardware/OS
technologies as well as the environment configurations) will
be the norm in these environments [8]. On shorter time
scales, it implies that partial failures will be the ”common
case”. Thus, to effectively address VP, ubicomp middleware
frameworks must meet the following requirements:

• Platform portability including legacy support (R1):
OS and hardware heterogeneity implies that the mid-
dleware platform itself must be portable across differ-
ent hardware and OS technologies. “Java everywhere”
and similar approaches do not suffice, because they at-
tempt to define heterogeneity out of existence and as-
sume that non-conforming applications will be rewrit-
ten. Furthermore, due to the existence of useful legacy
software such as the Web, desktop/productivity appli-
cations, etc., ubicomp software must make it easy to
integrate legacy applications.

• Application portability and new device extensibility
(R2): Ubicomp environments are characterized by ex-
treme diversity, and no two ubicomp environments are
likely to be identical with respect to the available re-
sources and their configurations. Applications written
atop the platform should be easy to port and adapt to
different environments. To accommodate incremental
evolution, extending applications by adding new de-
vices should be easy.

• Robustness and ease of administration (R3). Volatil-
ity on smaller time scales requires us to deal with dy-
namism (e.g. people or devices entering/leaving spaces
without signoff) and partial failures as common cases.
Transient failures in parts of the system should not
cause cascading failures, and recovery from transient
failures should not require unavailability or recovery
of the whole system. Further, the lack of well-qualified



system administrators in ubicomp environments im-
plies that the middleware software should be easy to
administer.

In this paper, we examine how we met these re-
quirements iniROS, a middleware system forinteractive
workspaces, a particular class of ubicomp environments. In
accordance with the needs of interactive workspaces, iROS
consists of three subsystems: EventHeap for application co-
ordination, DataHeap for data movement and transforma-
tion, and ICrafter for user control of resources. Though we
have described two out of the above three subsystems in-
dividually (ICrafter [23], EventHeap [15]), to date we have
not described in detail nor quantitatively evaluated the sys-
temwide portability, extensibility, and robustness, which re-
sult from thesynergistic combinationof the three subsys-
tems.

iROS was previously introduced in [16], an overview ar-
ticle describing the middleware and HCI issues in interac-
tive workspaces, that only briefly and informally discusses
the middleware components. Here, we describe and ana-
lyze in detail the key design principles that enabled iROS
to achieve the above requirements, and demonstrate us-
ing new quantitative evaluation results that these principles
are effective in practice. We also derive the lesson that
for room-sized ubicomp systems, centralized infrastructure-
based mechanisms enable several systemwide behaviors
that are necessary/desirable, while providing sufficient scal-
ability.

The rest of the paper is organized as follows. In section
2, we briefly introduce our specific problem domain, inter-
active workspaces, and the various subsystems of iROS. In
sections 3-5, we explain the design principles employed by
iROS to address R1, R2, and R3 respectively. Section 6 de-
rives suitable lessons based on the results of sections 3-5. In
sections 7 and 8, we survey related work and conclude.

2 Interactive Workspaces and iROS

As an example of a ubicomp environment, we focus
on aninteractive workspace (IW): a localized technology-
augmented environment where people come together for
collaborative work. Our testbed, the iRoom (figure 1), fea-
tures three rear projected touch-sensitive screens along one
wall, a bottom projected table, and a custom 12-projector
tiled display (“the Mural” [14]) driven by a workstation
cluster that does distributed rendering of OpenGL.

iROS is the software infrastructure for interactive
workspaces designed based on the requirements of these
environments. The programming model for iROS is
one of ensembles of independent entities that commu-
nicate via message passing (“events”) using a logically-
centralized, broadcast-based communication substrate

Figure 1. A meeting in the the iRoom

called the EventHeap [15]. The EventHeap is based on the
tuplespaces model first proposed by LINDA [10], although
unlike LINDA, events in the EventHeap have timeouts (sim-
ilar to TSpaces [29]) to prevent unlimited accumulation of
events. The EventHeap also makes a number of other mod-
ifications to the basic tuplespaces framework, as described
in [15].

The DataHeap, the second iROS component, provides
type-independent and location-independent storage of large
and semi-permanent data in an interactive workspace. To
store data in the DataHeap, applications submit the data
(such as a document) and associated metadata (owner, cre-
ation time, etc) to the DataHeap. To retrieve data, applica-
tions can query the DataHeap based on the metadata. Where
necessary, the DataHeap also provides type transformation,
using a type transformation system called Paths [18].

The final component of iROS is ICrafter [23]: a frame-
work for services. We refer to any hardware or software en-
tity (lights, projectors, media players, a browser/PowerPoint
running on a large display, etc.) that is controllable over the
network as a service. Services written using the ICrafter
framework can be programmatically controlled by appli-
cations or directly controlled by end-users (from a web
browser, for example).

In the following sections, we examine how the require-
ments R1, R2 and R3 were met in iROS. In general, we fo-
cus on the design principles, but use iROS to illustrate and
evaluate the effectiveness of these principles in practice.

3 R1: Platform Portability

A simple strategy to simplify portability is to reduce the
number of mechanisms that need to be ported to every client
platform - a principle we calleconomy of mechanism. Con-
sider application coordination: table 1 shows the three types
of application coordination that have been noticed by us
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Figure 2. Latency vs Throughput plot of the
EventHeap. 100 clients were used to generate a
variable “background” request rate, while a sep-
arate client was used for the latency probe. In
the solid curve, latency probes and background
events were of the same event type, whereas dif-
ferent event types were used for the dashed curve.

and other ubicomp researchers. Many ubicomp frameworks
provide multiple mechanisms for supporting the different
types of coordination. For example, Jini provides RMI,
JavaSpaces and an event notification mechanism. In con-
trast, we use a single mechanism - the EventHeap - for all
the above types of coordination.1

A single mechanism implies less to port across all the
client platforms. Consequently, it was easy to port the
EventHeap client library to multiple platforms (UNIX,
Windows, Mac, WinCE2) and languages (Java, C/C++,
Python). As shall be explained in the next section, economy
of mechanism has also offered another advantage – dynamic
extensibility through interposition.

The use of a single mechanism raises scalability con-
cerns. To test this aspect of the system, we evaluated the
scalability of the EventHeap, the results of which are shown
in figure 2. The figure illustrates that we achieve sufficient
scalability for room-sized ubicomp environments, indicat-
ing that scalability is not a concernfor our domain.

Apart from simplicity at the logical level that results
from a single, simple coordination mechanism, iROS re-
duces client complexity at the implementation level too.
The EventHeap, DataHeap, and ICrafter were each imple-
mented forclient simplicity:

• The EventHeap implementation is client-server based,
with the event buffering and matching logic handled

1Applications such as streaming that must use a point-to-point con-
nection can set up such a connection after initial coordination over the
EventHeap.

2Currently underway

by the server.

• The DataHeap stores both the data and metadata on the
server-side – the data on a WebDAV [1] server and the
corresponding metadata (including the datatype) in a
fast in-memory XML database. All the data transfor-
mation functionality is concentrated on the server-side
too.

• ICrafter places UI selection, generation, and adap-
tation functionality in an infrastructure-based service
called the interface manager (IM). Client devices (end-
user devices) simply request UI’s from the IM while
specifying the target service and the desired toolkit
(HTML/WML/VoiceXML browser, Java Swing etc).
The IM selects a suitable UI generator for the target
service and UI toolkit from its repository of UI genera-
tors. In fact for some toolkits (such as HTML, Swing),
the IM automatically generates a functional (if clumsy)
if a handwritten UI is not found in the repository for the
given service.

Placing much of the complexity on the server-side im-
plies ease of porting to various client platforms, especially
to resource-constrained clients, which are expected to be a
major component of ubicomp environments. Placing func-
tionality on the server-side also has the obvious downside
of requiring a server, which may not often be feasible for ad
hoc environments. However, for fixed environments such as
interactive workspaces, such a server is readily available.

Another advantage resulting from economy of mecha-
nism and client simplicity is legacy support. In general,
the more a framework expects from the underlying plat-
form and participating applications, the harder it is to in-
tegrate legacy platforms and applications, because legacy
systems provide limited maneuverability. The simplicity of
iROS client mechanisms implies that the “bar is set very
low” for integration, and this has contributed to the ease
of legacy platform and application integration. For exam-
ple, our collaborators in the civil engineering department
were able to integrate their legacy construction data view-
ers into the EventHeap easily [15]. Modifying the original
standalone viewers to use the EventHeap required no more
than about 100 lines of code each. As another example, us-
ing a Java-COM bridge, we wrappered Microsoft IE into an
ICrafter service. Creating a simple version of the service
(that only supports the “gotoURL” method) requires just 20
semicolons of Java code. This service allows users to send
Web pages to displays by sending a suitable navigate com-
mand to the ICrafter IE service running on that display. We
call this behavior multibrowsing [17].



Table 1. Types of coordination behavior
Coordination type Explanation Possible

modes
Example

Anonymous, event-
driven coordination

Sender sends events to notify changes of state
and other significant occurrences. Sender often
unaware of who/how many receivers subscribe.

one-one,
one-many,
one-none

A motion sensor sends an event when it de-
tects motion in the room. Interested applica-
tions react accordingly.

Intentional naming Sender identifies receiver(s) through attributes in
the message

one-one,
one-many

An application requests a document to be
displayed on all the “large” displays in the
room.

Point-to-point Sender explicitly addresses the message to re-
ceiver

one-one An application requests a browser running
on a specific display to navigate to a partic-
ular URL.

4 R2: Application Extensibility

An important aspect of our design islevels of indirection
(LoI) at multiple levels of the architecture - in communica-
tion, data exchange, and user control.

The DataHeap provides an LoI between data senders and
receivers. Data producers store documents and associated
metadata in the DataHeap, and consumers query based on
metadata and indicate which formats they can accept. If the
format indicated by a receiver does not match the original
data type, the DataHeap dynamically instantiates a chain of
transformation operators to convert the data to one of the
acceptable types. Hence, the Data Heap frees data produc-
ers from having to know who the consumers of their data
will be. This property is essential for extensibility to new
devices, and avoids having to rewrite existing applications
to support the data formats required by new devices.

ICrafter provides an LoI between services and their con-
trollers in the form of the IM, and this LoI facilitates exten-
sibility to new devices possessing new UI toolkits (WML,
VoiceXML, etc). To allow a service to be controlled by a
new toolkit, a UI generator for the service for the appro-
priate toolkit can be added at the IM, and no modification
to the service is necessary. As explained in [24], the IM
can also be configured to automatically search a web-based
global repository for new toolkit service UI’s. Thus, when
a new UI toolkit (such as WML or VoiceXML) appears, the
IM automatically searches for the new UI-toolkit generators
for all (and only) the services installed in the environment.
This has the effect that services automatically adapt to con-
trol devices with new UI toolkits.

To illustrate how the levels of indirection in DataHeap
and ICrafter contribute to the extensibility of applications,
we describe a sample application called SmartPresenter – a
multi-display, multi-object presentation program for inter-
active workspaces.

While traditional presentation programs coordinate the
display of slides across time, SmartPresenter coordinates
the display of information across both time and display sur-
faces. For instance, in the iRoom, with three large displays
on one wall, for some specific point in their presentation,

the presenter may configure the system to display an out-
line of the talk on the left-most display, the main content
slide on the middle display, and a detail of a dataset on the
right-most display.

The core of the SmartPresenter application is the Smart-
Presenter service that reads a presentation script specify-
ing what actions should be taken at what point in the pre-
sentation. The most common action is displaying a par-
ticular data object on a named display such as slide #4 of
a PowerPoint presentation, or a digital photograph. (Note
that every display runs a display service instance, and each
instance has a unique name.) The SmartPresenter service
reads the script and issues appropriate commands (over the
EventHeap) to the individual display services.

One of our new displays, the Mural, cannot display Mi-
crosoft PowerPoint presentations but can display JPEG im-
ages. However, by adding a simple PowerPoint-to-JPEG
transformer (written using PowerPoint’s ActiveX API) to
the DataHeap, the Mural could be integrated into SmartP-
resenter without changing the SmartPresenter or the Mural.
Consequently, when a user asks to display a presentation on
the Mural, the alternative JPEG version is shown.

By default, SmartPresenter only provides web-based
(HTML) control using ICrafter’s automatic HTML UI gen-
erator. However, new modes of presentation control, such
as through Java Swing, WML, and VoiceXML can be eas-
ily enabled by ICrafter. These tasks involve only adding the
corresponding UI generators for SmartPresenter at the IM,
without the need for modifying any of the existing Smart-
Presenter code, and without installing any SmartPresenter
specific code on the new devices. For example, we wrote a
SUIML 3 generator for SmartPresenter using only 75 lines
of XML.

The economy of mechanism principle described in the
previous section also contributes to extensibility. The fact
that all applications use a single broadcast mechanism for
all their coordination needs implies the possibility ofsnoop-
ing and intermediation. That is, since events are always sent

3SUIML (Swing UI Markup Language) is a homegrown XML-based
language for describing Java Swing UI’s.



between applications through the EventHeap, an intermedi-
ary can observe an event from a source and generate one or
more events of different types in order to cause a desired
action in a different receiver or receivers. Using snooping,
SmartPresenter can be extended to allow audience members
to track the current presentation (on any of the displays)
from a laptop. Tracking the current presentation is done by
snooping on the main control command events being sent
to that display. To enable this behavior, all the user needs
to do is to run a display service instance on her laptop with
the same name as the display service running on the desired
target display. Table 2 summarizes the effort needed for
various SmartPresenter extensions.

Most frameworks provide environment portability by as-
suming that the applications discover the services in the lo-
cal environment and adapt their behavior accordingly. In-
terposition provides an additional degree of environment
portability. To illustrate this, consider multibrowsing (re-
call from previous subsection) that allows applications to
send web pages to target displays. Early prototype appli-
cation developers had hard coded the names of target dis-
plays in the iRoom, making their applications non-portable
to other iROS installations. We exploited the ability to in-
terpose inmbforward, a simple intermediary that picks up
multibrowse events directed to the specified targets and au-
tomatically re-routes them to different machines by generat-
ing new events. Using this mechanism, we were able to use
multibrowsing demos originally hardcoded to the iRoom for
demonstrations in other locations, without changing any of
the original application source code.

5 R3: Robustness and Ease of Administra-
tion

Failure resilience in iROS is achieved through multiple
mechanisms - LoI in communication, ICrafter’s soft state
mechanisms, and EventHeap’s fast restart.

The EventHeap provides an LoI in communication via
loose coupling of the communicating entities, which results
in improved failure resilience. First, entities communicat-
ing through the EventHeap do not have direct connections
between them (referred to asspatial decouplingby LINDA
proponents) encouraging failure resilience through isola-
tion. Second, since events are semi-persistent, communi-
cating entities do not have to be up at the same time (re-
ferred to astemporal decouplingby LINDA proponents).
Temporal decoupling can mask transient failures in entities.
In particular, if a service to which an event is directed tem-
porarily dies and is restarted immediately (by an enclosing
“while{1} restart ” script), the service still picks up
the event, and the sender does not perceive a failure.

Services in ICrafter advertise their presence and other
state information with periodic beacon events. The expira-

tion time of a beacon event is set to twice the beacon period.
The beaconing library used by services can also be used by
components other than services, such as short-running ap-
plications to announce their state information. The beacon-
ing library provides a soft state mechanism for state sharing
among application components and services. “Stale” bea-
con events associated with failed components will eventu-
ally expire and other components will detect their absence
after at most two beacon periods.

The most involved partial failure scenario is the crash of
the centralized EventHeap server – potentially a single point
of failure that can in turn cause cascading failures as other
components lose their connections to the server. We pre-
vent this “single point of failure” behavior by a synergistic
combination of fast restart, auto-reconnect and beaconing
as described below:

• To simplify recovery and enable faster performance in
the steady state, the server does not write events to
disk. As a result, we may lose some events during
a crash, but the EventHeap can be restarted quickly
without any special recovery actions, and the restart
time for the server itself is only 200 milliseconds.4 The
lost events can cause temporary disruption (e.g., a light
control command will have no effect) but retrying the
command after the EventHeap has recovered fixes the
problem.

• Further, the EventHeap client library provides an auto-
reconnect feature: connected applications detect an
EventHeap failure and they auto-reconnect when it is
restarted.

• Some inconsistency is expected for a brief period fol-
lowing the restart of the EventHeap because all the
built up soft state is lost in the crash. However, this
state is automatically replenished in at most one bea-
con period after the clients reconnect.

Thus, the total time for recovery as perceived by the user
is TTR = TJV M + TEH + TRC + TB , whereTJV M is
the time to start the JVM,TEH is the time for EventHeap
initialization,TRC is the time for all the clients to reconnect,
andTB is a beacon period. TypicallyTJV M is between 1.5
and 2.5 seconds andTEH = 200ms.

Consistent with Miller [20], we define “fast enough” re-
covery as 10 seconds, which according to Miller’s study is
noticeable but unlikely to distract the user from the task at
hand. Figure 3 shows the reconnect times for clients (TRC )
under varying values of the number of active clientsN at
the time the EventHeap fails. From the figure, it may be

4Placing the Event Heap startup command inside awhile(1) loop
recovers from JVM crashes; we are working on external monitoring to
restart the Event Heap when livelock or thrashing is detected.



Table 2. Effort needed to extend SmartPresenter in various ways
SmartPresenter Task iROS features used Number of semicolons
Adding Mural to SmartPresenter DataHeap transformer API, Third-

party Java-COM bridge
84 semicolons + 46 lines XML

Web-based control of SmartPresenterICrafter automatic HTML UI gener-
ator

Free

Swing-based control of SmartPresen-
ter

Add SUIML UI generator for
SmartPresenter to IM’s repository

75 lines of XML

Allowing client laptop to follow pre-
sentation

EventHeap snooping Free
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Figure 3. Speed of EventHeap recovery with dif-
ferent numbers of clients. The figure plots the
fraction of clients successfully reconnected as a
function of time.

inferred that for our typical operating parameters (less than
50 simultaneous clients and a beacon period of 5 seconds),
TTR < 2.5 + 0.2 + 1.2 + 5, i.e., less than 9 seconds. This
recovery time is currently adequate for our purposes, but
we are exploring techniques for improving reconnect time
when more than 100 clients are connected.

The auto-reconnect feature plays a key role in enabling
dependency-free restarts of failed components. Without
this, we would need to restartall iROS components, as well
as all iRoom services and applications, after an EventHeap
crash. In fact, we had this problem with an earlier version
of the EventHeap based on IBM TSpaces [29].

Below, we summarize the failure resilience features of
iROS:

• If a service experiences a transient failure and is im-
mediately restarted, it can still pick up events directed
to it (assuming the event has not expired yet), and thus
the transient failure is masked.

• If a service (or an application component) fails per-
manently, its beacon events eventually expire causing
other entities to detect its failure in at most two beacon

periods.

• If the EventHeap itself has a transient failure, it can
be restarted quickly and beacons restore the soft state
within a beacon period.

We do not argue that these are theonly recovery mech-
anisms needed in an interactive workspace—these do not
handle deterministic failures, such as a pathological event
that always crashes the EventHeap, or hard failures, such
as a persistent hardware failure on one of the machines. But
these mechanisms do handle a wide variety of transient fail-
ures, and we have verified from experience that most ob-
served failures of iRoom software are in fact transient and
curable through restarts.

With respect to administration, it may appear that our
strategy of using centralized server-based mechanisms for
client simplicity implies additional administration. How-
ever, since recovery of the EventHeap doesn’t require any
special actions, it can often be automated, and when man-
ual intervention is necessary, it can be performed by “any-
one”, and a qualified administrator is not necessary. More
importantly, client simplicity actually results in significant
software administration/maintainability benefits because:

• Less functionality on clients implies less to install on
the numerous clients and fewer upgrades.

• Policy configurations are centralized on the server, and
hence are easier to maintain.

Historical experience of corporate enterprises indicates that
centralized administration and simpler client software leads
to simpler administration and reduced total cost of owner-
ship.

6 Synthesis

Table 3 summarizes the various principles employed by
iROS’s subsystems to deal with portability, extensibility
and robustness. Modifying any of these design choices
would affect multiple requirements. Note that all the design
choices are related to centralization - either at the logical



Principle Architectural feature Benefits Reference
Economy of mechanism One mechanism for app co-

ordination
Less to port and ease of inte-
grating legacy systems (R1)

Section 3

Snooping and interposition Environment portability
(R2)

Section 4

Client simplicity Complex functionality on
server in each of DataHeap,
EventHeap and ICrafter

Less to port on each client
device (R1)

Section 3

Ease of software admin-
istration and maintenance
(R3)

Section 5

Levels of indirection or LoI Spatial and temporal decou-
pling in EventHeap

Failure resilience (R3) Section 5

Interface Manager (LoI for
UI’s)

Extensibility to new devices
(R2)

Section 4

DataHeap (LoI for data ex-
change)

Extensibility to new devices
(R2)

Section 4

Table 3. Design choices/principles and how they address the requirements. Each principle affects multiple
requirements. Note that all the design choices in the left column are related to either logical centralization or a
centralized implementation of one or more iROS subsystems.

level or the implementation level. In other words, central-
ization played a key role in achieving the requirements we
set out with. Centralization is not panacea – table 4 summa-
rizes some negative implications that stem from centraliza-
tion – but these disadvantages are either not relevant for our
domain or can be effectively neutralized as shown in the ta-
ble. Thus, we observe that centralization provides a simple
way of achieving many of the properties that are necessary
in this domain.

Apart from the theoretical arguments and experimen-
tal results presented in this paper, our positive deployment
experiences with iROS confirm the validity of the design
principles. iROS is a real system in daily use by multiple
groups of non-systems researchers. Regular group meet-
ings in the iRoom routinely use several iROS applications
and services (many of which are described in the overview
article [16]). iROS has also been deployed in more than
half a dozen environments, several of which are non-CS en-
vironments such as the Center for Integrated Facilities Engi-
neering (http://cife.stanford.edu ) and the Pro-
gram in Writing and Rhetoric. iROS is expected to be the
base technology for new distance-learning classrooms to be
completed in 2003. Although the deployments have been
far from perfect (we describe areas of future work below),
iROS has been sturdy under a variety of conditions of use
by people other than its creators. We believe that the posi-
tive deployment experiences with iROS validate the choice
of abstractions and requirements.

Two important avenues of future work are a comprehen-
sive security model for iROS and better detection of fail-
ures. A drawback of the event-driven anonymous coordina-
tion we exploit for application coordination is that it is not
meaningful to talk about end-to-end delivery semantics of
messages, since the sender does not know in advance who
the receiver(s) will be or whether there will be any at all.

As a result, failures in receiver(s) are harder to track down.
With respect to security, we note that a centralized architec-
ture leads to a simpler security solution since it implies a
single place for access control and policy management.

7 Related Work

Table 5 compares iROS to other most closely related
ubiquitous computing architectures in their support for
platform and language portability, application portability
and extensibility, and resilience to partial failures. We
omit detailed descriptions of these systems due to lack of
space. Jini [3] and UPnP [27] are network-level frameworks
for service discovery and interoperation; and Gaia [25],
One.World [12], and Equip [11] are higher-level ubiquitous
computing architectures or meta-operating systems. We
base our comparison on the requirements R1-R3, and at-
tempt to compare how the mechanics of these systems meet
these requirements. In particular, we are not interested in
comparing the choice of functionalities offered by each of
these systems but are instead comparing whether the design
and implementation of those functionalities (and the appli-
cations built to use them) provides for portability across en-
vironments, extendibility to new devices, and resilience to
partial failures. It is worth noting that some of these systems
provide benefits that iROS does not, such as One.World’s
support for migration, and Gaia’s context service.

The Intelligent Room at the MIT AI Laboratory [6] and
Microsoft Research EasyLiving [4] both use a combination
of sophisticated sensor fusion and AI techniques to enable
the environment to deduce the user’s needs from contextual
and other cues. “Smartness” was not one of our goals: we
focused instead on providing the infrastructure for applica-
tion programmers to simplify writing applications with the



Negative Implication Offsetting factor Section
Scalability Centralized systems can achieve sufficient

scalability for this domain.
See graph 2

Single point of failure Fast restart See graph 3
Requires a server Not a concern for most home/office environ-

ments and interactive workspaces in particu-
lar. Potential concern in ad hoc environments.

Section 3

Table 4. Negative implications of centralization and corresponding offsetting factors. For the interactive
workspaces domain, the negative implications can be effectively offset.

R1: Platform and language
portability

R2: Application portability
and extensibility

R3: Recovery from partial
failures

Jini No No Reclaims resources
UPnP Yes No No
Gaia Yes Environment portability Reclaims resources

One.World No Partial Yes
Equip No Partial ?

Table 5. Summary evaluation of the support other ubiquitous computing architectures provide for platform and
language portability, application portability and extensibility, and resilience to partial failures. Next to iROS,
Gaia provides the best overall support; One.World provides the most support for recovery; and UPnP provides
good platform and language portability.

behaviors they desire.

The Beach architecture [26] is built for synchronous col-
laboration among users of “roomware”, such as tables and
chairs integrated with information technology. Beach, im-
plemented in SmallTalk, provides a sophisticated layered
software architecture for developing applications in this en-
vironment, using object-oriented language techniques to
provide extensibility of applications and reusability of com-
ponents.

The EventHeap draws upon pioneering earlier work
by the proponents of the tuplespaces (LINDA [10]) and
publish-subscribe (InfoBus [22]) frameworks. ICrafter
improves upon earlier work by Hodes et al [13], while
the DataHeap builds upon prior work in datatype trans-
formation (TOM [21]) and attribute-based filesystems
(Presto [7]).

Our approach to robustness based on fast restart draws
from the recursive restartability project [5]. The use of
beaconing-based soft state is a well known technique in
the systems community. Recent projects in related domains
such as INS [2] and SNS/TACC [9] have also exploited this
technique for increased robustness. Finally, in [28], Wang
et al. describe their experience improving the dependabil-
ity of home networking technologies using redundant com-
munication networks (power-lines, phone-lines and RF).
Network-level reliability was not one of our goals however:
we focused on robustness of our system to failures of the
components themselves, and assume the existence of rea-
sonable best-effort network technologies.

8 Conclusions

In this paper, we studied how portability, extensibil-
ity and robustness were achieved in iROS, a middleware
platform for a class of ubicomp environments. The three
key design principles underlying iROS that have facilitated
portability, extensibility and robustness are listed below:

1. Economy of mechanism: A single mechanism for all
types of application coordination.

2. Client simplicity: Putting complexity on infrastructure
based servers.

3. Levels of indirection: A level of indirection – whether
in data exchange, user control or communication – al-
lows us to add new behaviors at the indirection point
without changing the end-points.

We observe that centralized design and implementation fa-
cilitate applying each of these design principles. We have
also shown how the disadvantages of centralization are ei-
ther not relevant or can be effectively offset in this do-
main. In particular, centralized systems can achieve suf-
ficient scalability for this domain; and the combination of
soft state and fast restart neutralize the single point of fail-
ure. Thus, we conclude that with a logically-centralized de-
sign and physically-centralized implementation, we get the
best behavior in terms of extensibility and portability along
with ease of administration, andsufficientbehavior in terms
of scalability and robustness; any change in that set of de-



sign decisions would have a negative effect on more than
one of the desired properties.
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