
Patch Panel: Enabling Control-Flow Interoperability in Ubicomp
Environments

Rafael Ballagas
RWTH Aachen University

Department of Computer Science
Lehrstuhl für Informatik X
52056 Aachen, Germany

ballagas@cs.rwth-aachen.de

Andy Szybalski, Armando Fox
Stanford University

Department of Computer Science
353 Serra Mall, Stanford, CA 94305

andys, fox@cs.stanford.edu

Abstract

Ubiquitous computing environments accrete slowly
over time rather than springing into existence all at once.
Mechanisms are needed for incremental integration—
the problem of how to incrementally add or modify be-
haviors in existing ubicomp environments. Examples in-
clude adding new input modalities and choreographing
the behavior of existing independent applications. The
iROS Event Heap, via its publish-subscribe coordination
mechanism, provides the foundation for interoperation
through event intermediation, but does not directly pro-
vide facilities for expressing these intermediations. The
Patch Panel provides a general facility for retargeting
event flow. Intermediations can be expressed as simple
event translation mappings or as more complex finite-
state machines. We describe an implemented prototype
of the Patch Panel, including examples of its use drawn
from real life applications in production use in the iRoom
ubiquitous computing environment.

1. Introduction and Motivation

Weiser’s landmark article defined ubiquitous com-
puting environments as spaces where computers are
both plentiful and subtle, allowing computation to
blend invisibly into the fabric of our everyday activities
[25]. Our homes [13] and office environments [10] will
be augmented with technologies to improve the way we
live and work. By examining the way these buildings
evolve, it becomes clear that these ubiquitous comput-
ing environments will be incrementally deployed [20].
New technologies will be brought piecemeal into these
spaces [4]. Clearly, system components like physical de-
vices, applications, and network services cannot be ex-

pected to anticipate every other component they may
encounter. These entities need to be able to coherently
communicate without a priori knowledge of each other.
Moreover, the nature of the interaction must be mean-
ingful to both the individual components and the users
of the system.

These constraints raise the questions: How does one
design a system that may be augmented with future
devices and services whose nature or feature set can-
not be predicted in advance? Once the system is work-
ing, how does one integrate new devices and applica-
tions that may have no knowledge of each other’s exis-
tence or function? We refer to this challenge as incre-
mental integration, and we note that answering these
questions would also answer the question of how to get
current devices and services to interoperate that were
not designed to do so.

2. Control-Flow Interoperability

The question of incremental integration has been
central to our work in the iRoom, a conference-room-
style ubicomp environment [10]. Our experience has
led us to distinguish two main modes of interopera-
tion: data-flow and control-flow. Data-flow interopera-
tion refers to resolving mismatches in data type, a prob-
lem that received much attention in the mobile comput-
ing literature [7]. For example, a user may wish to con-
nect a camera that produces images in JPEG format to
a printer that accepts data in PostScript format. The
iROS DataHeap [12] provides semi-transparent support
for datatype transformation; Speakeasy [5] also pro-
vides such support by exploiting mobile code “prox-
ies” to perform datatype conversion.

However, datatype conversion is insufficient to en-
able interoperation. Continuing the above example, the
user may want to specify color vs. black-and-white



printing, choose paper size, or the order in which pages
will print. The communication of metadata and com-
mands between the camera and the printer will vary
depending on the the specific devices and their capa-
bilities. We refer to this challenge as control-flow inter-
operability.

To date, several methods have been proposed to ad-
dress control-flow operability. One method is direct
user intervention via GUI’s as in iCrafter [19] and
Speakeasy [5]: each time the user wishes to print a pic-
ture, a specialized GUI allows the user to set printing
preferences for that specific printer model. This ap-
proach does not support making “automatic” connec-
tions free of user intervention, for example, using sensor
data from a motion detector to turn on the lights. An-
other approach to control-flow interoperability is inter-
face standardization, as attempted by Sun’s Jini [24]:
each class of service or device (e.g. printers) must ad-
here to a set of standard interfaces, allowing substitu-
tion of any service or device in that class. This turns
out to be surprisingly difficult, even for such a seem-
ingly simple class of devices as printers: after more than
two years in committee, the Jini specification for print-
ers is still (as of January 2004) labeled “pending rati-
fication”. One may infer that in fact the definition of
a printer is a moving target since the feature set keeps
changing. As new services or features are created, they
cannot be exploited by applications until their integra-
tion into existing programmatic interfaces has passed
the standards-approval process, potentially leading to
unacceptable delay in adoption of the new service or
feature.

The third approach to control flow interoperability,
embodied by the Patch Panel, is intermediation. This
approach utilizes a decoupled communication model,
such as event publish/subscribe, for inter-component
communication. Implicit in the model is the ability to
intercept and rewrite these event streams. The iRoom’s
core software component, the Event Heap [9], was
specifically designed to allow for such intermediation.
However, it does not directly provide any facilities for
expressing intermediation.

The Patch Panel fills this gap by providing interme-
diation facilities on top of the Event Heap. In essence,
it provides a generic set of mechanisms for intercept-
ing and translating incoming events to outgoing events,
enabling control-flow interoperability among any set of
entities that communicate via exchanging events over
the Event Heap. Previous work has shown [9] that it
is very easy to connect “legacy” desktop applications
(such as Win32 applications that use OLE) and Web-
based applications to the Event Heap, so that they
can communicate using a common substrate; the Patch

Panel leverages this ease of integration and adds the
necessary machinery to perform the event translations
needed to connect such components together. For the
rest of this paper, we will generally focus on Event
Heap-aware applications, although the Patch Panel ap-
proach is effective for any system using decoupled com-
munication.

Systems like Context Toolkit [21] and Smart-its [3]
combine information from multiple devices into ab-
stracts of context cues. These context cues are essen-
tially event aggregates that can be mapped to device
or service control. Others have demonstrated the ef-
fectiveness of using state machines to express aggre-
gate event composition for publish / subscribe systems
[15, 17]. The similar capabilities included in the Patch
Panel may also be used for this purpose, but this work
sets out to show that they can be used for intermedia-
tion and incremental integration.

The rest of the paper proceeds as follows. We be-
gin with a basic description of the intermediation fa-
cilities provided by the Patch Panel. Next we describe
more formally how the notation used in the basic ex-
amples actually maps to the intermediation machinery
available in the Event Heap. We then describe several
programming patterns that arise in addressing control-
flow interoperability and illustrate how the Patch Panel
addresses each one; descriptions is are based on real-
life examples from existing iRoom applications includ-
ing the iClub [22] and the Workspace Navigator [8]. Fi-
nally, we discuss Patch Panel deployment scenarios, in-
cluding the configuration interfaces available for both
expert/administrator users and casual users.

3. The Patch Panel and Intermediation

3.1. Review of iROS and the Event Heap

For readers unfamiliar with the Event Heap, the cen-
tral coordination mechanism used in the iROS ubicomp
software framework, we briefly review its salient char-
acteristics; details of its design can be found in [9], and
an overview of how it enables inter-application coor-
dination in the iRoom ubiquitous computing environ-
ment can be found in [10]. The Event Heap (EH) uses a
tuplespace abstraction to provide, among other things,
event publish/subscribe to a set of clients. An event
consists of an unordered set of attribute-value pairs,
one of which is designated as the event’s type and the
remainder of which are application-specific. The ba-
sic operations are put, which posts an event, and get,
which queries for the existence of an event based on a
template that specifies required fields and constraints
on their values. Event subscription is also provided:
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Figure 1. The Patch Panel adds a level of indirection to the communication channel to two components in
order to perform event intermediation. The publish/subscribe semantics are also demonstrated. Note that
there is actually only one Patch Panel process per Event Heap; two are shown above for visual clarity.

clients can receive a callback when events matching
a particular template are posted to the EH. In keep-
ing with the Boundary Principle [14], a single EH is
the locus of interaction for a single ubiquitous comput-
ing environment, and a service or device can partici-
pate in that environment if and only if it can commu-
nicate with that environment’s EH. Various libraries
and other software components allow EH clients to be
written in Java, C/C++, Visual Basic, Perl, Python,
and other languages; servlets allow Web-based clients
to perform limited EH operations as well.

3.2. Event Translations as Mappings

The Patch Panel enables intermediation among enti-
ties that communicate via event publish/subscribe (See
Fig. 1). Simple intermediations are expressed as map-
pings that connect “triggers” (observed events emitted
by some entity) with “outputs” (new events emitted as
a result of the trigger, presumably for consumption by
a different entity). The Patch Panel works by subscrib-
ing to all events. If an event is received that matches a
trigger condition, the Patch Panel generates the corre-
sponding output event(s) and posts them to the EH.

A mapping (trigger → output events) is the basic
abstraction provided by the Patch Panel. For example,
suppose we have a wireless iStuff button [1] that posts a
Button event1 each time it is pressed with string-valued
field id, a light dimmer service that responds to Lights

1 The stylized event names such as Button and Lights represent
the mandatory event type field of the events.

events containing an integer-valued field brightness
between 0 and 10, and a projector-control service that
responds to events Projector with boolean-valued field
powerOn. We can configure the button to turn the lights
and projector on by establishing the Patch Panel map-
ping in Figure 2.

Now, when someone presses the button, the follow-
ing sequence of operations occurs:

1. In response to being pressed, the button posts a
Button(id=red) event to the EH.2

2. Although neither the light service nor the projec-
tor service recognize the Button event, the Patch
Panel recognizes it as a trigger for the Button map-
ping shown above.

3. The mapping fires, causing the Patch Panel to
post the events Lights(brightness=10) and Pro-
jector(powerOn=true) to the EH.

4. The light controller recognizes the Lights event
and turns the lights on; the projector controller
recognizes the Projector event and turns the pro-
jector on.

3.3. Intermediation as State Machines

Suppose instead that we want the red button to tog-
gle the lights and the projector between on and off. As-
suming (as is often the case) that we cannot “query”

2 As described in [1], simple hardware devices such as buttons
and sliders typically communicate with a software proxy that
connects the devices to the EH.



Button(id=red) → Lights(brightness = 10), Projector(powerOn=true)

Figure 2. Simple Patch Panel mapping that turns on lights and projector

the light service or the projector service to inquire
about their current state (on or off), we could turn the
button into a toggle switch by using a finite state ma-
chine (FSM) such as in Fig. 3.

If the red button is pressed while the Patch Panel is
in the Off state, it will turn on the lights and the pro-
jector, and vice versa. Although the button is state-
less and the light and projector services do not expose
their internal state, the Patch Panel instantiates an
FSM that “remembers” the current state of the inter-
action and responds accordingly to the Button(id=red)
trigger event.

4. FSM’s and Mappings

In this section we describe how the state machines
used in the foregoing examples are actually translated
to event mappings, and how the mappings are modi-
fied on each state transition. We also discuss the Patch
Panel’s performance and fault-tolerance.

4.1. Mappings as State Machines

As illustrated by Figure 3, the effect of expressing in-
teractions as FSM’s is that the mapping of a given trig-
ger to a set of output event(s) depends on the current
state of the FSM. In fact, such interactions are imple-
mented using the same underlying mechanism that is
used for simple mappings like the Button examples in
section 3.2. To illustrate how this is done, consider a
more complex example. Here we add support for an in-
room motion sensor that posts a MotionSensor event
whenever it detects activity. If no motion is detected
for timeout seconds, the lights and projector turn off
automatically. The FSM description is shown in Fig-
ure 4.

Using Figure 4, we can formalize the Patch Panel’s
operation as follows. Let S0, . . . , Sn−1 be the n states
of an FSM that expresses a Patch Panel-mediated in-
teraction. From Figure 4, let S0 be the Off state and S1

the On state. Let mi be a simple event mapping of the
form ti → oi1, oi2, . . . oik, where ti is a trigger event and
oi1 . . . oik are the output events triggered by ti. Finally,
let NS(i) be the number of the next state to go to af-
ter emitting the output events of mapping mi. From
Figure 3, each of the “on” clauses generates one map-
ping mi and one next-state NS(i) as demonstrated in
Figure 5.

Let Mi be the set of mappings consistent with the
FSM being in state Si. For Figure 4, we would have
M0 = {m0} and M1 = {m1,m2,m3}. The Patch
Panel maintains a single set P of mappings that is cur-
rently active, i.e. against which incoming events will
be checked for triggers. When a state transition oc-
curs into state Si, P must be set to Mi. With this no-
tation, we can express in pseudocode the operation of
the Patch Panel (by convention, S0 is the initial state):

1. Compute all mi, NS(i), and sets M0 . . .Mn−1

from textual FSM description;

2. Set P to M0;

3. do forever:

(a) wait for an event ti that triggers some map-
ping mi in P ;

(b) emit the mapping’s output events
oi1, . . . , oik;

(c) set P to MNS(i);

In other words, the Patch Panel’s textual front-end
takes a description of a Mealy-style FSM and gener-
ates the corresponding per-event mappings to imple-
ment that FSM. As we will show, therefore, the Patch
Panel can be configured either by modifying individ-
ual mappings using a GUI editor or by creating a tex-
tual FSM description such as those above. The FSM de-
scription language is loosely based on the intermediate-
file format used by fsmc, a finite-state machine com-
piler used in several digital design courses. fsmc con-
verts FSM specifications to sum-of-products Boolean
expressions that can be used to program logic arrays.
The only control-flow keywords we provide are state
to declare a new state, on to specify trigger events,
send to emit an output event, and goto to transition
to the next state. A complete description of the lan-
guage can be found in [2].

We now discuss the idiosyncrasies of running an
FSM engine on top of the Event Heap.

4.2. PPMapping Events

The actual modification of the set P referred
to above is itself controlled by events. In particu-
lar, the Patch Panel looks for a special event type
called PPMapping. These events can be used to add, re-
move and modify the active mappings P .



state Off {
on Button(id = red) {

Lights(brightness = 10);
Projector(powerOn = true);
goto On;

}
}
state On {

on Button(id = red) {
Lights(brightness = 0);
Projector(powerOn = false);
goto Off;

}
}

state On

state Off

on Button(id=red)/
send

Lights(brightness=0) &
Projector(powerOn=false)

on Button(id=red)/
send
Lights(brightness=10) &
Projector(powerOn=true)

Figure 3. Simple light-and-projector toggle

state Off {
on Button(id = red) { // turn things on manually

Lights(brightness = 10);
Projector(powerOn = true);
goto On;

}
}
state On {

on MotionSensor { // motion detected, so...
set timer 1000*timeout; // ...reset idle timer
goto On;

}
on timer { // no motion sensed, so...

Lights(brightness = 0); // ...turn things off
Projector(powerOn = false);
goto Off;

}
on Button(id = red) { // turn things off manually

Lights(brightness = 0);
Projector(powerOn = false);
goto Off;

}
}

Figure 4. FSM description with timers

m0 = Button(id=red) → Lights(brightness=10), Projector(powerOn=true) NS(0) = S1

m1 = MotionSensor → set timer 1000*timeout NS(1) = S1

m2 = timer → Lights(brightness=0), Projector(powerOn=false) NS(2) = S0

m3 = Button(id=red) → Lights(brightness=0), Projector(powerOn=false) NS(3) = S0

Figure 5. Mappings that implement the state machine for in-room motion sensor



The reason for exposing PPMapping as an event-
based interface (i.e. as an external primitive) is to al-
low dynamic reconfiguration: it allows the set of active
mappings to be changed not only as a result of inter-
nal state transitions, but also by an external controller
program. In section 5 we illustrate an example of how
to exploit this capability in the user interface for pro-
gramming and using the Patch Panel.

4.3. Atomic State Transitions

By design, the Event Heap does not guarantee or-
dering of events from different sources. Therefore, out-
put events from the PatchPanel and trigger events from
other sources may be interleaved. This is problematic
since the FSM abstraction requires that the emitting
of output events (step 3b above) and transition to the
next state (step 3c) must occur atomically. To address
this, the Patch Panel provides event chains, which are
groupings of events that must be processed atomically.
In our current implementation, any outgoing event con-
taining a field ChainEvent is considered to be part of
an atomic event chain. The Patch Panel’s event emit-
ter passes event chains directly to its own event han-
dling loop (i.e. these events do not travel through the
Event Heap at all), where they are given highest prior-
ity.

4.4. Performance and Failure Semantics

The Patch Panel is often in the critical path of
the human interface action-perception loop. The ba-
sic measure of Patch Panel performance is the delay
between the posting of a trigger event to the Event
Heap and the receipt of the correct resulting out-
put event(s) to the Event Heap. Our microbenchmark
for simple mappings in Figure 6 shows this delay to
be about 12ms, of which 6ms is due to the Patch
Panel itself and the remainder is attributed to seri-
alization/deserialization of events, network delay, and
internal Event Heap delay. The total delay increases
with events that contain more fields. It may also in-
crease when there are many (over 100) mappings, be-
cause the Patch Panel’s mapping hash table was de-
signed for small numbers of mappings.

Because the Patch Panel is an Event Heap client, it
inherits the Event Heap’s robustness [18] in handling
failures. In particular, the failure of other Event Heap
clients does not compromise the operation of the Patch
Panel. Failure of the Patch Panel causes intermediation
to cease until it is restarted. The Patch Panel’s inter-
nal mappings are saved to disk, and the states of the

active state machines will survive restarts of both the
Event Heap and the Patch Panel.

5. Functionality Motivated by Example

One of the lessons of our work relates to the reper-
toire of “programming patterns” needed to cover a
broad variety of incremental-integration scenarios. In
this section, we describe some of the patterns supported
by the Patch Panel, motivating each one with a real-
life example. As a preview, the mechanisms we will de-
scribe are as follows:

1. Allowing for dependent translations, where the
field values of output events are not known at the
time the mapping is specified. Instead, the output
fields must be derived from field values of trigger
events at run time.

2. Programmatically exposing to applications the
ability to change mappings on the fly, allow-
ing the construction of GUIs and other applica-
tions whose function is to configure the Patch
Panel itself.

3. Allowing the use of global variables (whose value
persists across individual firings) to further sup-
port interactions requiring persistent state.

4. Providing an abstraction for time, allowing for
time-based interactions

This set of examples is based on two real applica-
tions: the iClub [22], an iRoom application that cre-
ates an interactive dance club environment using the
large displays in the iRoom, and Workspace Navi-
gator (WSN) [8], an application that captures meet-
ings in the iRoom using video cameras, digital white-
board systems, screen capture software and a docu-
ment archive. Videos showing each application in use
are at http://iwork.stanford.edu.

iClub is a distributed application that includes a
playlist program to select songs and sound effects, an
audio proxy application that plays the audio and pub-
lishes a “beat clock” event synchronized to each beat of
the music, several visualization applications that syn-
chronize to the beat of the music by subscribing to the
beat clock events, and a GUI that controls various as-
pects of the music as it plays

5.1. On-the-Fly Integration

The audio proxy recognizes events to adjust the vol-
ume and tempo of the music, inject sound effects, and
apply high- and low-pass frequency filters (a common
audio special-effect) to the music. In the original ver-
sion of iClub, a human DJ would use a GUI to control



0

10

20

30

40

50

60

70

80

0 100 500 1000

Translation Round Trip Time (ms)

# of fields

# of mappings

Figure 6. Patch Panel performance degradation. The performance degrades as the number of oustanding
mappings increases, and as the number of event fields increases.

Figure 7. (Left)the iClub in Action with iSlider, (Right)examples of iStuff [1] input devices

these aspects of the music. However, an observer sug-
gested that the clubgoers themselves should be able to
participate in the music creation without leaving the
dance floor. We arranged to give each clubgoer a wire-
less button with a unique ID as they entered the room.
Each button was mapped through the Patch Panel to
direct the audio proxy to play a sound, so each clubgoer
had her own characteristic sound effect that could be
injected by pressing her button. We refer to this com-
mon programming pattern—connecting a new physical
or other UI to an existing behavior—as on-the-fly inte-
gration.

5.2. Range Normalization

The developers’ next inspiration was to allow a DJ
to use a wireless handheld slider to have mobile con-
trol the tempo of the current song. Conceptually, this
is similar to the previous example in that a slider event

must be used to trigger an iClubAudio output event,
except that the value of the slider must also be re-
flected in the output event. Furthermore, the specific
slider we used produces real numbers in the range 0.0 to
1.0, whereas the iClubAudio’s tempo parameter must
be an integer from −10 to +10. We use the term range
normalization to describe this pattern for incremental
integration. The Patch Panel supports range normal-
ization by allowing output event fields to reference in-
put event fields and by providing a simple arithmetic
expression evaluator. Figure 8 shows a mapping that
connects the slider to the tempo control.

This mapping will fire when the Patch Panel receives
an event of type iSlider that contains a field named
position. The tempo field of the iClubAudio output
event is computed from the position field of the in-
put event (in.) each time the mapping fires. Similarly,
the prefix out. could be used to reference other fields
in the current output event; the Patch Panel automat-



iSlider(position = *) → iClubAudio(tempo = (int)in.position * 20 - 10)

Figure 8. Range Normalization and Equation Specification

ically detects syntax errors or output field dependency
loops and leaves such equations unresolved (in string
form) for debugging purposes.

5.3. Dynamic Reconfiguration

The wireless slider works well to control a single pa-
rameter, but in order for a DJ or clubgoer to abandon
the desktop GUI completely, she must have the abil-
ity to change any of the music parameters, not just the
tempo. We constructed a new device by physically at-
taching four wireless buttons (call them 1, 2, 3, 4) to
the slider. Pressing a button determines which music
parameter—tempo, volume, high pass filter, low pass
filter—is controlled by the slider. This case is more sub-
tle, because the effect of pressing a button is not to
emit a new audio event, but rather to affect the han-
dling of future iSlider events. In other words, pressing a
button should change the currently-active iSlider map-
ping. We therefore refer to this pattern as dynamic re-
configuration.

As explained previously, the Patch Panel consumes
events of type PPMapping to modify the set of cur-
rently active mappings. With this in mind, the map-
pings to implement the “multi-slider” handheld music
controller are shown in Figure 9.

When the Patch Panel receives a Button(id=1)
event, for example, it emits a PPMapping event that
will set up a new mapping for future iSlider events to
control the music’s tempo. This powerful dynamic re-
configuration allows complex interactions to be synthe-
sized without direct user interaction.

Since the above mappings are somewhat difficult to
interpret for a programmer unfamiliar with the Patch-
Panel, we could also have expressed the multi-slider
example using the FSM representation shown in Fig-
ure 10, and in fact, submitting this FSM description to
the Patch Panel’s FSM compiler would effectively re-
sult in the mappings in Figure 9.

Several points about this example should be empha-
sized. First, the handheld DJ device and the interaction
with the iClub Audio Proxy were assembled from de-
vices and services that had no a priori knowledge of
each other. In other words, the slider has no concept of
a button or vice versa, and the iClub Audio Proxy has
no concept of any physical devices. Also in this exam-
ple, the buttons and mappings, once initially set up by
an administrator, represent a tangible UI for reconfig-

uring the Patch Panel that can be used by people who
have no technical skill or knowledge of Event Heap op-
eration. We return to the issue of how different users
might actually use the Patch Panel in section 6.

5.4. Semantic Mismatches and Globals

At one point, the wireless slider malfunctioned, and
although we did not have another slider immediately
available, we did have a joystick. However, while a
slider’s position naturally maps to the value being con-
trolled, a joystick’s position naturally maps to the rate
of change of the value being controlled (since joysticks
are self-zeroing). We refer to this circumstance as se-
mantic mismatch, and in this case can be resolved by
using an FSM with global variables as shown in Fig-
ure 11. Global variables store values that must per-
sist across firings of mappings; variables can be set us-
ing “PPVariable” events and dereferenced on the out-
put side of any mapping by using the prefix global.
To mimic the slider’s behavior with a joystick, we use a
global variable to hold the current “slider position” and
adjust the global variable’s value each time the joystick
is moved. To avoid wild fluctuation in the variable’s
value, we can use timers (as previously described) to
control the interval at which the joystick is sampled;
changing the timer value changes the sensitivity of the
joystick as a controller. Although the joystick is an im-
perfect interaction modality for the iClub Audio Proxy,
the Patch Panel made it possible to use it as an ade-
quate substitute until the slider could be replaced.

5.5. Integration in Workspace Navigator

The last example concerns Workspace Navigator
(WSN) [8], an application that captures multi-person
meetings in interactive rooms containing shared pub-
lic displays. WSN’s GUI provides a “bookmark” fea-
ture that allows a participant to flag an important
moment in the meeting; WSN’s meeting-replay tools
can then be used later to reconstruct the state of the
meeting (e.g. which documents were visible on each
of the shared displays) at the time the bookmark was
inserted. To implement the bookmark function, the
WSN GUI console sends a Bookmark event to the WSN
server application when the Bookmark GUI widget is
clicked.



Button(id=1) → ( PPMapping[ iSlider(position = *) → iClubAudio(tempo=(int)in.position*20-10) ] )
Button(id=2) → ( PPMapping[ iSlider(position = *) → iClubAudio(volume=(int)in.position*100) ] )
Button(id=3) → ( PPMapping[ iSlider(position = *) → iClubAudio(highfreq=(int)in.position*100) ] )
Button(id=4) → ( PPMapping[ iSlider(position = *) → iClubAudio(lowfreq=(int)in.position*100) ] )

Figure 9. Patch Panel mappings that enable the multi-slider handheld music controller

state ControllingTempo {
on iSlider(position=*) { send iClubAudio(tempo=int(in.position)*20-10); }
on Button(id=2) { goto ControllingVolume; }
on Button(id=3) { goto ControllingHighFreq; }
on Button(id=4) { goto ControllingLowFreq; }

}
state ControllingVolume {
on iSlider(position=*) { send iClubAudio(volume=int(in.position)*20-10); }
on Button(id=1) { goto ControllingTempo; }
on Button(id=3) { goto ControllingHighFreq; }
on Button(id=4) { goto ControllingLowFreq; }
}

}
...

Figure 10. FSM description of iClub multi-slider mappings

During user testing of WSN, one user complained
that inserting a bookmark required disrupting the
meeting to acquire the shared keyboard and mouse
(in order to interact with the GUI), discouraging users
from taking advantage of this feature. The researcher
proposed giving each meeting participant a wireless
button that could be discreetly pressed to add a book-
mark during the meeting. This approach has the addi-
tional benefit that each bookmark could be associated
with the participant who inserted it.

To implement this, an iRoom administrator created
a simple Web-based “This Is My Button” wizard that
configures an iButton (an iStuff wireless physical but-
ton) to send Bookmark events. On entry to the iRoom,
a meeting participant, say Rachel, picks up an iBut-
ton from a bucket of buttons, enters her name into the
Web form, and submits the form. The form submission
runs a servlet that waits for the next button press from
any iButton. Rachel now presses the (physical) button,
causing the servlet to establish a Patch Panel mapping
connecting her particular button to bookmark events
with her name attached to them.

This is another example of dynamic reconfiguration.
The entire process of integrating the wireless button
interaction into the WSN project only took about an
hour and did not require any changes to the Workspace
navigator code or the wireless buttons.

5.6. Summary

It has been about a year since work began on the
Patch Panel, and in that time, researchers in our space
have been using it to put together separate compo-
nents in ad-hoc ways. Uses have ranged from enhanc-
ing existing applications, as illustrated by the foregoing
examples, to creating new interactions using physi-
cal input devices. All the examples above are real and
are in production use. Although each is simple by it-
self, together they illustrate the versatility and relative
simplicity of the Patch Panel approach to interoper-
ation, allowing multi-device systems to be deployed
or existing applications to be augmented in a mat-
ter of minutes. The table in Figure 12 summarizes
the examples, including the interoperability program-
ming pattern illustrated by each and the Patch Panel
mechanism(s) leveraged to achieve the desired re-
sult.

6. Configuration and Ease of Use

The ease of configuring mappings for interoperation
is a key consideration in evaluating the usefulness of
the Patch Panel. Since Patch Panel mappings can be
changed by any client that emits PPMapping events,



state JoystickMoved {
on Joystick(joystickX, joystickY) {

global.currentX += in.joystickX * global.scaleFactor;
global.currentY += in.joystickY * global.scaleFactor;
send Position(global.currentX, global.currentY);
set timer sampleRate;
goto WaitingForSample;

}
}
state WaitingForSample {

on timer { goto JoystickMoved; }
}

Figure 11. Resolving semantic mismatch between relative-position and absolute-position devices. We have
minimally stylized the code for readability.

(Section) Example Name On-the-flyIntegrationDynamic ReconfigurationState MachineRepresentationEquations / RangeNormalizationGlobal Variables /Semantic MismatchTimers
(3.2) Lights and Projector on x

(4.1) Lights and Projector toggle x x x

(4.1) Motion sensor toggle x x x x x

(5.1) iClub sound buttons x

(5.2) iClub slider x x

(5.3) iClub multi-slider x x x

(5.4) iClub joystick x x x x x x

(5.5) Workspace Navigator x x
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Figure 12. Patch Panel Example Summary Table

we can create a variety of configuration interfaces, from
narrowly-specialized GUI’s for casual users to sophis-
ticated GUI’s or textual interfaces for administrators
and expert users.

6.1. Support for Expert Users

We distinguish expert from casual users. Expert
users include: developers who want to create or aug-
ment applications by connecting new behaviors via the
Patch Panel; system administrators; and “power users”
(akin to those who can write complex macros in spread-

sheet programs) who want to modify the behavior of
existing applications.

The FSM scripting language described in section 4.1
provides a powerful textual front-end for expert users.
We have also built the Patch Panel Manager (fig-
ure 13), a tree-based view of the Patch Panel map-
pings that allows expert users to graphically browse
the current mappings and create new ones. Using this
GUI requires some understanding of Event Heap se-
mantics as well as the event interfaces of individual
components. In everyday situations, the Patch Panel



Figure 13. The Patch Panel Manager

→ →

Figure 14. Button-to-URL Configuration Servlet

Manager is used to visualize and debug the state of
the Patch Panel. It is also particularly useful for mak-
ing on-the-fly modifications to mappings or for “debug-
ging” in-progress mappings; for example, changing the
amplification factor applied to an input device.

6.2. GUI’s for Casual Users

While the Patch Panel Manager GUI and the FSM
scripting language satisfy most of an administrator’s
Patch Panel needs, it is also important for casual users
of different skill levels to be able to define interactions
to meet their needs. To demonstrate the potential sim-
plicity of configuring the Patch Panel we have created a
Button-to-URL Configuration Servlet (Fig. 14). It pro-
vides a web-based “wizard” interface that configures
an iStuff button to display a user-chosen Web page. To
configure a button, the user types the target URL into
the configuration Web page and clicks “Submit”. Then
the servlet probes the Event Heap for the next but-
ton press. The user picks up any button from a bucket
of buttons, and presses it. The servlet associates the
pressed button with the URL; any subsequent events
from that button will be translated to an event that
opens the URL on a large public display.

This configuration servlet and the iClub multi-slider
illustrate a class of interfaces that require developer ef-

fort up front to expose specific and limited Patch Panel
functionality to less technical users. We are in the pro-
cess of exploring more general “wizard” type configu-
ration interfaces for casual users of iStuff [1].

7. Conclusions

We have argued from the beginning [18] that incre-
mental integration is an essential property of robustly-
evolving ubicomp environments, and that a powerful
technique to enable integration is by intermediation
of control flow. This insight was originally expressed
in [15], but to the extent that intermediation is a solu-
tion in search of a problem, we believe that interoper-
ation and evolution in ubiquitous computing environ-
ments is that problem.

Although an expert user can certainly write a full-
blown Java program with arbitrarily complex event
translation logic, we hypothesized that a small num-
ber of programming patterns serve to capture a wide
variety of common integration and evolution tasks.
Our goal was to provide a simple programming sub-
strate that supports rapid and easy expression of the
most common such patterns through its textual in-
terface, and admits of the rapid creation of graphi-
cal or physical interfaces for novice users to perform



narrowly-specialized configuration tasks, as the iSlider
and Workspace Navigator examples illustrate.

The result of our work to date is a system that en-
ables intermediation-based control-flow interoperabil-
ity in ubiquitous computing environments. Semantic
mismatches between incompatible interfaces can be re-
solved with state machine and equation evaluation ca-
pabilities. The dynamic reconfiguration feature of the
Patch Panel is critical in enabling state machine ca-
pabilities, retargeting event flow based on user input
or context from sensor data, and enabling simple user
interfaces to reprogram the Patch Panel. This combi-
nation of features provides a powerful integration tool
that can be used to easily create and modify, often in
a matter of minutes, interactions between networked
hardware and software components in ubiquitous com-
puting environments.
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