
Reusable Functional Composition Patterns for Web Services

Laurence Melloul and Armando Fox
Computer Science Department, Stanford University�

melloul,fox � @cs.stanford.edu

Abstract

Developers write Web service composition programs in
terms of functionalities (e.g., “WebSearch”) to postpone
choosing which services of the same functionality to invoke
(Google or Yahoo). We provide a higher level of abstraction
than this for higher reuse. We express high-level “patterns”
(e.g., “SearchAndCollectData”) as both objects that can
be “specialized” to particular applications (“SearchAnd-
DownloadPapers” vs. “SearchAndAddBooksInCart”) and
objects that are reusable in the construction of higher-
level ones. Our approach lets developers write patterns in
terms of high-level functionalities (e.g., “CollectData”) and
later decide on services to compose that have lower-level
functionalities (e.g., “DownloadPapers” or “addBooksIn-
Carts”). We describe our prototype and show an example
of nested pattern specialization. We also discuss a reuse
trade-off, showing that too much abstraction makes the pat-
tern less expressive. Rather, we suggest developers capture
what must be guaranteed in every context of invocation, re-
gardless of the service selection.

1. Introduction

When composing Web services as in [1], developers
write programs in terms of functionalities, which are ab-
stract functions having names describing their purpose,
e.g., “WebSearch.” The motivation is to postpone choosing
which Web service to invoke, e.g., Google or Yahoo.

Consider that “SearchAndDownloadPaperAbstracts” is
a similar activity to “SearchAndPutBooksInCart.” Both re-
quire searching a database for a list of matching items and
then acquiring them. In one case, the database is an on-
line bibliographic database such as CiteSeer, and the acqui-
sition process downloads the paper abstracts; in the other
case, the database is a retailer’s book catalog, and the ac-
quisition process adds items to the shopping cart. We want
the ability to express the higher-level pattern “SearchAnd-
CollectData” that can be both specialized to particu-
lar applications (“SearchAndDownloadPaperAbstracts”

vs. “SearchAndPutBooksInCart”) and reusable in the con-
struction of higher-level objects.

We provide a methodology and a framework to achieve
these goals. Using our methodology, developers decide how
abstract a pattern should be when they create it. Through
the framework, they browse the functionalities and avail-
able services when creating and specializing a pattern.

In our approach, developers write patterns in terms of
high-level functionalities, and later decide on the function
signature they want to associate to a functionality appear-
ing in a pattern. For example, in the case of the SearchAnd-
CollectData pattern, a call to CollectData may be bound
to DownloadAbstract(PaperUrl,AbstractRegEx) in one spe-
cialization or PutInCart(ISBN, CartID) in another.

Our system does not address automatic discovery or dy-
namic selection of Web services that match functionalities.
Rather, we focus on how developers express compositions
of functionalities. We do not require a machine-readable
specification of service semantics; we assume that develop-
ers select services manually at pattern-specialization time.

The rest of the paper is organized as follows. In section 2,
we explain our approach to writing functional composition
patterns. In section 3, we formalize the conditions for bind-
ing services to the composed functionalities in a given pat-
tern. In section 4, we expose a reuse trade-off that helps de-
velopers decide on the pattern abstraction level at creation
time. We describe our system implementation in section 5
and provide examples of pattern specialization. Section 6
addresses the reuse of a pattern to match a functionality.
Section 7 discusses our design limitations and the system’s
usability. We present related work and our conclusion re-
spectively in sections 8 and 9.

2. Approach Overview and Definitions

Our goal is to help developers write high-level composi-
tion patterns that, when reused, are specialized through the
choice of their components. There are two steps:

1. Writing patterns in terms of calls to “high-level” func-
tionalities (e.g., “CollectData”). As we will show,
there is a trade-off between how high-level (service-

independent) a pattern can be and how expressive the
pattern logic can be.

2. Supporting the selection of Web services of “lower-
level” functionality than the ones composed in the
pattern (e.g., “DownloadPaperAbstracts” or “Put-
BooksInCart” for “CollectData”).

SearchAndCollectData

SearchAndPutBooksInCart

SearchAndDownloadPaperAbstracts

SendMessage

SendEmail

SendSMS

MakePhoneCall

YahooMail Net2Phone
BuyBooks

Amazon.com_BuyBooks

Figure 1. Functionality specialization.

We say that F1 is a higher-level functionality than F2
(and F2 a lower-level functionality than F1) if F1’s purpose
is more general than F2’s. The lowest-level functionalities
are Web service instances (e.g., Amazon.com BuyBooks in
figure 1). A functionality’s purpose is a subjective notion;
we assume developers or ontology creators decide on the
functionality ordering.

If F1 is higher-level than F2, then F1 may be special-
ized into F2, that is to say, we may use F2 in place of F1 in
a pattern. By transitivity, a higher-level functionality (e.g.,
SendMessage in figure 1) may be specialized into any Web
service its lower-level functionalities specialize into (e.g.,
YahooMail). It is possible for a service to be usable in place
of a given functionality in a pattern and not in another, be-
cause of the service constraints each pattern captures. We
give shortly the conditions required to validate a function-
ality specialization in a given pattern.

A pattern is a program that embeds calls to function-
alities, and it has no other distinctive characteristic. Since
functionalities can be of different levels of abstraction, the
pattern writer must decide on the level to use. For example,
should the pattern call SendEmail, or call the more general
functionality SendMessage and rely on binding-time spe-
cialization to select the email-sending function for binding
to SendMessage? As we will show in section 4, the choice
depends on the extent to which the inputs and outputs of the
functionalities must be directly manipulated by the pattern
logic. The more “visible” they are to the pattern, the more
specific the functionalities must be, and in general the less
reusable (re-specializable) the pattern will be. We discuss
the trade-off arising from the policy decision of how high-
level a functionality to use, while showing that our system
provides the mechanism for handling binding at any level.

Such a general mechanism must be able to bind a
wide selection of function signatures to a given func-
tionality in the pattern, in order to encompass many dif-
ferent lower-level functionalities (e.g., SendEmail or
SendSMS for SendMessage). To allow this, we let de-
velopers vary the number of parameters to the func-
tionality call in the pattern, and we define the signature
specified as the minimal required for a service to be se-
lected. At specialization time, we can bind the func-
tionality to any service that has larger sets of input and
output parameters. For instance, a call to “SendMes-
sage(MessageContent)” is compatible with services of the
SendEmail or SendSMS functionalities, although these re-
spectively require an email address and a phone number
in addition to the message content. Because these addi-
tional inputs do not participate in the pattern’s logic, we
must provide their values outside the pattern. We can ob-
tain them by calling services selected for other functionality
calls in the pattern or for functionality calls in a code exten-
sion of the pattern. For an example of the latter, the phone
number in the above example may be retrieved from a pro-
file service.

To summarize, for a given functionality to be specialized
into a given Web service in a pattern, the service must be
of a lower-level functionality, it must have larger parameter
sets, and all its inputs that are not part of the functionality
call in the pattern must be provided outside the pattern.

3. Pattern Specialization Formalism

We now formalize these conditions. We thereafter spec-
ify the conditions needed to specialize the whole pattern.

Let M be a functionality and ���������
	����������� ����� be
the set of service functions of equal or lower-level function-
alities than M. Referring to figure 1, if M is ’SendMessage’,
��� is � YahooMail, Net2Phone � .

For all � in ��������� ��! , we define �
"$#%�'& 	" �(& �" ����� &*)�+" ��,.-/" ,
which are service functions with input parameters
& 	" � & �" ����� &)�+" and result data - " . All � " ’s have fixed but
likely different signatures, because they may be of differ-
ent lower-level functionalities than M.

When used in the pattern P, M’s call defines a mini-
mal function signature in the context of P (M has no sig-
nature assigned to it outside a pattern). Let it be 0213#
��& 	 � & � ����� &)54 ��,6- .

We address the following question: Given the functional-
ity call statement 0617#8��& 	 � & � ����� &)94 ��,:- in P, is a ser-
vice function �
";#<��& 	" �(& �" ����� &) +" ��,6-=" applicable for that
invocation? That is to say, can we bind �>" to M in P?

We assume the pattern P has inputs ?'	��(?@�5����� ?BA .
Definition 1. � " is applicable to M in P if and only if:

1. ��"DC
��� (��" is of a lower-level or equal functionality
than M).

2. Considering inclusive polymorphism, R is a subset of
-=" (all output elements of 0 1 are outputs of ��").

3. For all � in ����������� � ! , &�� " and & � have the same type
(all inputs of 061 are inputs of � ").

4. For all � in � ����� ����������" ! ,
� either &�� " and ?	� have the same type, for some

in ����������� !
� or there exist:

– a functionality M’ used in P or in an ex-
tended code of P

– and a service function �� #�� ,.-� in ��� ’,

such that �� is applicable to M’ and &�� " is a sub-
set of -� .

That is to say, for every additional input of �>" not
specified as argument to the call of M in P, this in-
put is provided either as an input to the overall pat-
tern, or from an output of another service. This ser-
vice is bound to another functionality of the pattern or
to a functionality used in a code extension of the pat-
tern. Recursively, each input required by the binding
of such an extension is provided either as an input to
the overall pattern, or obtained by calling another ser-
vice in the pattern or in another extension, etc.

Definition 2. The pattern P’ is a code extension to P if P’
makes a call to a functionality whose binding to a service
function provides a piece of data needed by P.

Through conditions 2 and 3 in Definition 1, we guarantee
the functionality’s signature as specified in P is the minimal
signature required for any service to be selected. Through
condition 4, we guarantee all inputs required by the call to
the service function that is bound to M will be provided at
run-time. There is no risk of having cycles when binding
additional service input parameters, because an input is ei-
ther bound to a pattern’s input or to another service’s out-
put, both of which do not need to be bound.

Two call statements of the same functionality M may
specify different minimal parameter sets in different pat-
terns. Hence, different subsets of service functions from � �
may be applicable to the uses of M in different patterns.

A pattern is specialized if all its functionalities are spe-
cialized, that is to say, if they are all bound to service func-
tions and all necessary function inputs are also bound. The
use of minimal signatures gives us the flexibility to select
various combinations of services for the same pattern. The
conditions listed above guarantee that every combination
defines a complete (although likely different) data flow.

4. Pattern Abstraction

When developers create patterns, their objective will be
to maximize the potential for specialization. For each call in

the pattern they will need to decide on the sets of input and
output parameters to specify and on the level of functional-
ity abstraction to use. In this section, we expose a trade-off
that will help them make these decisions.

The trade-off is as follows : The fewer data references to
input and output parameters a given pattern’s functionality
call has, the more flexibility there will be in selecting ser-
vice function signatures to bind to this functionality, but the
less expressive the pattern will be.

Expressiveness is the qualitative degree of data flow that
is explicit in a pattern. Figure 2 is a simple pattern that se-
quentially invokes two functionalities, one to search for a
book and a second to reserve it. Since neither call state-
ment explicitly names arguments, the potential set of ser-
vices that we can select is large. However, we lose the abil-
ity to specify data flow in the pattern itself and must rely
on the functionality names only to understand what the pat-
tern does.

(define GetBookAbsolutely
(lambda ()

(GetLibraryBookRef)
(ReserveLibraryBook)))

Figure 2. No expressiveness.

Now consider a slightly different version of the pattern
(Figure 3) in which we want to specify an explicit depen-
dency between what the pattern does and some piece of data
provided by executing the body of the pattern. In this case,
the pattern will explicitly output a message confirming the
request date. Therefore, the selected SendMessage service
must take as input a “MessageContent” parameter. This pat-
tern specifies constraints on the services to be selected, but
it is marginally more expressive than the previous one.

(define GetBookAbsolutely
(lambda (date)

(GetLibraryBookRef)
(ReserveLibraryBook)
(SendMessage (string � append "book requested on " date))))

Figure 3. Little expressiveness.

The next version (Figure 4) encapsulates explicit con-
ditional execution in the pattern, allowing a warning mes-
sage to be generated if the desired book is not found. By
embedding this in the pattern, we are saying that any exe-
cution of this pattern must process services that satisfy the
call dependencies of GetLibraryBookRef and SearchBook-

store. Specifically, GetLibraryBookRef must be bound to a
service that returns a reference to the desired book, or the
empty string if the desired book is not found; and Search-
Bookstore must be bound to a service that clearly returns
SUCCESS if the search succeeds. Note that a service that is
bound to SearchBookstore very likely also produces the ti-
tle of the book found, but the pattern does not need it. Al-
though this pattern specifies more constraints on the service
selection, it has a much higher level of expressiveness be-
cause it performs substantial local data processing.

(define GetBookAbsolutely
(lambda ()

(cond ((not (string=? (GetLibraryBookRef) ""))
(let ([confNumber (ReserveLibraryBook)])

(SendMessage (string � append
"reservation confirmed "
confNumber))))

((string=? (SearchBookstore) "SUCCESS")
(BuyBook) (SendMessage "book bought"))
(else (SendMessage "Book not found"))))))

Figure 4. Large expressiveness.

In essence, by specifying what goes in the pattern, we
are specifying what elements must be common to any exe-
cution of the pattern; whereas by selecting specific services
that are compatible with the functionality call constraints in
the pattern, we may select elements that are found only in
some possible executions of the pattern.

Once developers decide what they want to cap-
ture in a pattern, they determine the level of abstraction
for each composed functionality, based on the data refer-
ences in the functionality call. For instance, a set of inputs
such as (MessageContent, MessageSubject, ToEmailAd-
dress, FromEmailAddress) will require a SendEmail
service, whereas a set such as (MessageContent) will toler-
ate any SendMessage service.

5. Composition Framework and Example

We have described our proposed methodology to create
and specialize patterns. We now take the position of devel-
opers who want to build two similar applications, one that
looks for books, filters them based on their reviews, and
adds them in a shopping cart; another that looks for movies,
orders them based on the country in which they were pro-
duced, and adds them to a queue. We can abstract these two
applications into the SearchAndCollectData pattern, which
searches for items, processes them, and collects them.

Another developer who has access to this pattern may
wish to reuse it for another purpose: to search for papers,
extract their abstracts, and store them in a remote server.

In the following, we show how the SearchAndCollect-
Data pattern is specialized into two different applications:
SearchAndDownloadPaperAbstracts and SearchAndAd-
dBooksInCart.

5.1. Injecting Web services in the framework

Figure 5. The SemMap tool.

To make a Web service available for composition, de-
velopers must map it to a functionality name and its inputs
and outputs to common parameter names. The SemMap tool
(Figure 5) parses the service’s WSDL to extract the param-
eter information and lets developers browse existing com-
mon terms or add new ones to perform the mapping. For in-
stance, the figure shows the selection of the “SearchItems”
functionality for Google’s search service as well as the map-
ping of its “q” parameter to “Keywords.” Developers per-
form the semantics mapping once and may then reuse the
services in many pattern specializations.

Common terminologies for functionalities and service
parameters are useful for two reasons: first, to ease de-
velopers’ understanding of the objects they want to reuse,
and second, to permit the supporting system to provide op-
timizations. For instance, our current implementation de-
duces non-ambiguous data dependencies between the ser-
vices selected during pattern specialization.

5.2. Pattern creation and specialization

Flatt’s Units [2] are a Scheme language construct that
provides for explicit and bi-directional binding. We express
Web services, patterns, and functionality-to-service bind-
ings as units. All these units import (require) and export
(provide) functionalities. The bindings of one unit’s exports
to other units’ imports take place in a compound-unit.

While processing a given WSDL, the SemMap tool also
extracts other pieces of information relevant to the service’s
invocation. For each operation in the WSDL, the system
automatically generates a Scheme unit (e.g., “doGoogle-
Search” in Figure 6). The unit has the capability to invoke
the actual Web service, by calling a Java servlet that makes
the HTTP or SOAP request and returns the results in XML
form.

; unit for doGoogleSearch GoogleSearchService.xml
; automatically generated by the system
(define doGoogleSearch GoogleSearchService.xml@

(unit
(import GetLicenseKey GetKeywords . . .)
(export SearchItems GetListOf Title URL Snippet)
(define GetListOf Title URL Snippet var "")
(define SearchItems

(lambda ()
; invoke actual google Web service
; extract xml results

))
(define GetListOf Title URL Snippet

(lambda () GetListOf Title URL Snippet var))))

Figure 6. The doGoogleSearch unit.

The doGoogleSearch unit exports the functional-
ity the service was mapped to, SearchItems. The unit
also imports the service’s inputs (in the example, “GetLi-
censeKey, “GetKeywords”) and exports the service outputs
(“GetListOf Title URL Snippet”). This way, we can ex-
press service data dependencies in the compound unit
once the service selection is made. (Each service param-
eter name has the “Get” prefix because we get the data
through accessor functions.)

In figure 7, we show the SearchAndCollectData@ pat-
tern unit. It is a simple pattern consisting of a sequence of
four calls to imported functionalities: SearchItems, Proces-
sItems, CollectData, and VerifyCollectedData. It exports the
“SearchAndCollectData” functionality.

(define SearchAndCollectData@
(unit

(import SearchItems ProcessItems CollectData VerifyCollectedData)
(export SearchAndCollectData)
(define SearchAndCollectData

(lambda ()
(SearchItems)
(ProcessItems)
(CollectData)
(VerifyCollectedData)))))

Figure 7. Pattern SearchAndCollectData@.

To specialize this pattern unit, we bind its functionali-
ties to equal or lower-level functionality services in a com-
pound unit. Figure 8 shows one specialization of the pat-
tern into the “SearchAndDownloadPaperAbstracts” appli-
cation. In the compound’s code, we assign the SearchAnd-
CollectData@ pattern the variable Y (at the bottom of the
unit). In the same statement, we bind its four imported func-
tionalities to other services’ exported functionalities. For in-
stance, the first parameter of SearchAndCollectData@ in
that statement, “(S0 SearchItems),” means that we bind the
first import of the SearchAndCollectData@ pattern to the
“SearchItems” export of the service that we have bound
to S0. This service is doGoogleSearch. We use it to look
for publications with user-submitted keywords on Citeseer.
The second functionality that we bind in the Y statement
is ProcessItems and we assign it to variable S3 (for the or-
dering of the imported functionalities, see the pattern itself
in figure 7). We map S3 to a local function, “ExtractDocu-
mentElements,” used to extract abstracts from the result pa-
pers and concatenate them in a document string. We imple-
ment the third functionality, CollectData, by saving the ab-
stracts on the remote XMethod’s file server (variable S4).
Last, for verification, we read back the stored file through
XMethod’s readFile service (S5).

We must specify in the compound all data dependencies
that are not captured by the pattern. For instance, we bind
S0’s exported GetListOf Title URL Snippet output to S3’s
input in line 9, and we pass S3’s output, GetResultAsString,
to S4. Also, we bind the “GetKeywords” parameter of do-
GoogleSearch in line 6 to the compound’s GetKeywords
import in line 3. A compound’s import is similar to a main
program’s command line argument and is submitted when
the compound is invoked. To bind a service input parame-
ter to a code extension of the pattern, we would need to add
another variable in the compound and bind the code exten-
sion functionality to a service that implements it. Then we
would bind the required input to the service’s correspond-
ing output.

Because the pattern calls high-level functionalities with
no input parameters, we can select many combinations of
services to bind to these functionalities. Figure 9 shows
a second specialization that searches for Amazon.com’s
books for a given query, filters them, and adds them to a
shopping cart.

Looking at the two compound units, we see that we
have built two different applications of the SearchAndCol-
lectData pattern: “SearchAndDownloadPaperAbstracts”
and “SearchAndPutBooksInCart.” In most cases, the ser-
vices selected in the two compounds for the same function-
ality have totally different function signatures. For instance,
the two services that perform the CollectData function-
ality are writeFile XMethodsFilesystemService.xml@
(Figure 8) and createAndAddItemsToShopping-

(define SearchAndDownloadPaperAbstracts@
(compound � unit
(import GetLicenseKey GetKeywords GetFileName . . .)
(link
[S0 (doGoogleSearch GoogleSearchService.xml@

GetLicenseKey GetKeywords . . .)]
. . .
[S3 (ExtractDocumentElements local@

(S0 GetListOf Title URL Snippet) . . .)]
[S4 (writeFile XMethodsFilesystemService.xml@

(S3 GetResultAsString) GetFileName . . .)]
[S5 (readFile XMethodsFilesystemService.xml@

GetFileName . . .)]
[Y (SearchAndCollectData@

(S0 SearchItems) (S3 ExtractDocumentElements)
(S4 WriteData) (S5 GetDocument))]

. . .
)

(export)))

Figure 8. A pattern specialization.

Cart amazon.com.xml@ (Figure 9). They respectively
take as inputs (GetFileContent, GetFileName, GetUserID
and GetPassword) and (GetGroupID, GetLicenseKey, and
GetListOf IdentifierNumber).

Both compounds are valid because all their services’ in-
puts are bound. Any other service combination that provides
a complete data flow would also be valid.

We have developed a second graphical tool, the Spec-
TOOL, that lets developers specialize patterns without writ-
ing any code. They select services to bind to the composed
functionalities of the pattern, and specify the data dependen-
cies between these. When there is no ambiguity, the tool de-
duces these dependencies, thereby reducing developers’ ef-
fort. In any case, it generates the corresponding compound
and the application is ready for execution.

6. Building-up Concepts

In this section, we show how to bind patterns to com-
posed functionalities in a larger pattern and hence reuse
them as objects in the overall pattern.

6.1. The pattern-to-functionality binding process

Patterns, like services, export functionalities. They also
have signatures. These consist of the pattern’s exported
functionality name (e.g., SearchAndCollectData) and its
sets of data imports and exports.

The conditions required for binding patterns to function-
alities in larger patterns include the ones we specified for
binding services to functionalities: the pattern must be of
an equal or lower-level functionality than the given func-
tionality in the overall pattern, it must have larger input and

(define SearchAndPutBooksInCart@
(compound � unit
(import GetGroupID GetLicenseKey GetKeywords

GetProductLine GetItemMaxPrice . . .)
(link
[S0 (keywordSearch amazon.com.xml@

GetGroupID GetLicenseKey GetKeywords GetProductLine . . .)]
[S1 (FilterOutItems local@

(S0 GetListOf IdentifierNumber Title ReleaseDate Price)
GetItemMaxPrice)]

[S2 (createAndAddItemsToShoppingCart amazon.com.xml@
GetGroupID GetLicenseKey
(S1 GetListOf Item Output) . . .)]

[S3 (getItemsInShoppingCart amazon.com.xml@
GetGroupID GetLicenseKey
(S2 GetCartIdentifierNumber)
(S2 GetCartSecurityRule))]

[Y (SearchAndCollectData@ (S0 SearchItems) (S1 FilterOutItems)
(S2 CollectItems) (S3 CollectItems))]

. . .

Figure 9. Another specialization.

output parameter sets, and any input parameters not speci-
fied in the functionality call statement in the overall pattern
must be bound to external sources.

An additional condition is that the pattern that is se-
lected for binding must also have all its imported function-
alities bound, either to services or other patterns. In the lat-
ter case, these patterns too must have their imported func-
tionalities bound, and so on. The process stops when all im-
ported functionalities are eventually bound to services.

Web services are special cases of patterns which do not
import functionalities. Therefore, binding functionalities to
patterns is a generalization of the functionality-to-service
binding process.

6.2. Example

We now show an example of nested pattern reuse. We
want to do a better paper search through various lists of
keywords: “Web service composition,” “high-level compo-
sition patterns,” and “abstract web services.” Papers that
would come out of all three searches would likely be more
relevant to our work and we should begin by reading those.

We compose the SearchAndCollectData functionality in
a new pattern, WeighCollectedData@: we call this function-
ality on each of our keyword set, and then call RankData on
the result list of abstracts, assigning each abstract a weight
according to its number of appearances (Figure 10).

The WeighCollectedData@ pattern imposes constraints
on the pattern signatures that can be selected for binding to
its SearchAndCollectData functionality call, in order to gain
in expressiveness. The system will not accept the function-
ality’s binding to the SearchAndCollectData@ pattern that
we discussed earlier (Figure 7). The reason is that this pat-

(define WeighCollectedData@
(unit

(import SearchAndCollectData GetListOf KeywordSet RankData)
(export WeighCollectedData)
(define WeighCollectedData

(lambda ()
(set! keywords sets (GetListOf KeywordSet))
(for � each (lambda (set) (SearchAndCollectData set))

keywords sets)
(RankData)))))

Figure 10. WeighCollectedData@.

tern has a smaller set of inputs (empty set) than the function-
ality call’s one (see the KeywordSet “set” input). However,
many patterns may export the same functionality. A valid
pattern for binding is SearchAndcollectData 2@ in figure
11 because it has an equal set of inputs (KeywordSet).

(define SearchAndCollectData 2@
(unit

(import SearchItems ProcessItems
CollectData VerifyCollectedData GetKeywordSet)

(export SearchAndCollectData)
(define SearchAndCollectData

(lambda ()
(SearchItems (GetKeywordSet))
(ProcessItems) (CollectData) (VerifyCollectedData)))))

Figure 11. SearchAndCollectData 2@.

The compound SearchAndWeighPaperAbstracts@ (Fig-
ure 12) shows how this larger application is created by spe-
cializing functionalities at two levels, for WeighCollected-
Data and SearchAndCollectData. In the compound’s code,
the WeighCollectedData@ pattern (variable Z) binds its
SearchAndCollectData imported functionality to the func-
tionality of the same name exported by the FromLambda-
ToImport unit (W), instead of binding it directly to the one
exported by SearchAndCollectData 2@. The W unit hence
implements a level of indirection necessary for binding:
it exports the KeywordSet parameter (which was passed
through the SearchAndCollectData call in the WeighCol-
lectedData@ pattern) so that it can be bound to the import of
SearchAndcollectData 2@. The system can automatically
generate W.

7. Discussion

We discuss successively the limitations of our design and
the framework’s usability.

We have shown how we specialize patterns and reuse
them as higher-order objects. However, we have an in-

(define FromLambdaToImport@
(unit

(import SearchAndcollectData Pat)
(export SearchAndCollectData GetCurrentKeywordSet)
(define set "")
(define SearchAndCollectData

(lambda (set) (set! set set) (SearchAndCollectData Pat)))
(define GetCurrentKeywordSet (lambda () set))))

(define SearchAndWeighPaperAbstracts@
(compound � unit
(import GetLicenseKey GetListOf KeywordSets GetFileName . . .)
(link
. . .
[S6 (rankData local@ . . .)]
[W (FromLambdaToImport@ (Y SearchAndCollectData))]
[Y (SearchAndCollectData 2@

(S0 SearchItems) (S3 ExtractDocumentElements)
(S4 WriteData) (S5 GetDocument)
(W GetCurrentKeywordSet))]

[Z (WeighCollectedData@ (W SearchAndCollectData)
GetListOf KeywordSets
(S6 RankData))]

. . .

Figure 12. The SearchAndWeighPaperAb-
stracts application.

herent paradox in our design, which makes the way we
build up higher-level concepts suboptimal. The first pattern,
SearchAndCollectData@ (Figure 7), can be specialized in
many ways because it does not have any data imports. How-
ever, this also reduces its potential for reuse as part of an-
other pattern. Indeed, its signature has fewer inputs than the
SearchAndCollectData functionality call in the WeighCol-
lectedData@ overall pattern, as we previously explained.
Hence, the SearchAndcollectData@ pattern cannot be se-
lected for that functionality in the overall pattern, although
there exists a specialization that would let it consume the
“KeywordSet” parameter (through the SearchItems binding
to “doGoogleSearch” that we have specified in figure 8). We
are currently investigating this problem and revising our de-
sign in order to address it.

Regarding the usability of the system, there are several
improvements we should make. A first area of improve-
ment is to increase the potential of reuse of the available
services and patterns in the system (let us note that discov-
ering a pattern reduces to discovering the functionality it ex-
ports). To that purpose, we must help developers detect use-
ful functionalities when they create patterns, and choose the
most appropriate names when they add a service in the sys-
tem. For instance, how would they know which functional-
ity term to look for if they wanted to add items in a shop-
ping cart? AddInCart? ShoppingCart? We plan to benefit
from ontology work to find solutions to these issues.

A second area of improvement is to reduce the relative

amount of code developers have to write in the compound,
compared to the pattern’s code. Indeed, it currently appears
that most of the work is done writing the compound as op-
posed to writing the pattern. We first plan to tackle more
complex examples of nested patterns. Second, we intend to
assist developers by refining the set of “boundable” services
for the composed functionalities in a pattern. For instance,
after the first service is selected, the tool could adjust the
choices for the second service based on the data dependen-
cies with the previously selected service, and so on. Last,
we would like to use the pattern as a functionality guide
for dynamically selecting Web services. The main problem
we foresee involves safely binding missing inputs to exter-
nal sources without compromising the semantics of the ap-
plication. For instance, if a service available for selection
requires a “phoneNumber” not provided by the pattern, in
what conditions can this piece of data be retrieved from an
external service S?

8. Related work

Our work differs from related work in that it permits
developers to specialize patterns with services of different
lower-level functionalities than the composed ones. In con-
trast, [1] provides support to select different Web services
that map to the same functionality.

Adding a service in the system requires the mapping
steps defined in section 5.1. The system then generates the
code to perform the Web service call. Despite the fact that
the reusability of the service depends on its functionality
name in our approach, there is no code-writing effort re-
quired to reuse a pattern, which contrasts with creating a
wrapper to perform a call redirection in the middleware [3].
Besides, reusing a program with services of different func-
tionalities for the same call seems just insuitable with prox-
ies or interceptors, because of the discrepancy between the
code that is visible and the executed one.

Although we do not use classes and derivation explic-
itly, our functionality hierarchy suggests an object-oriented
model. A service may be seen as an object of a functional-
ity class that has one method only (the service’s invocation
function). However, the flexibility to reuse and extend a pat-
tern doing late binding in such an explicit way as we have
done with units is a fair advantage towards the OO tools
currently available. Indeed, we offer a clear separation be-
tween the code for the pattern logic and the code specific to
a given service selection.

We plan to benefit from current effort on Web service de-
scriptions [4] and ontologies [5] once these technologies or
tools are mature for Web services.

Finally, we distinguish our work from automatic Web
service composition such as the Semantic Web [5] and AI
planning [6] where the goal is to produce a composition

plan. Rather, we start with a (high-level) plan and focus our
work on its reuse.

9. Conclusion

Through this work, we have shown how develop-
ers can create high-level patterns that get specialized in
many ways through component selection. Specializa-
tion may occur with a selection of services whose pa-
rameter requirements were not anticipated at the time the
pattern was written. We have also described how develop-
ers can build up concepts by reusing patterns.

We have provided a methodology and framework to re-
alize our approach. We have exposed a trade-off in deciding
on the abstraction level with which to create patterns: the
fewer parameter references a given functionality call makes
in a given pattern, the more flexibility there will be in select-
ing services of various lower-level functionalities for that
call, but the less expressive the pattern will be.

The examples suggest that it is easy to specialize pat-
terns by creating new compound units. However, they also
underline an issue of usability that we look forward to ad-
dress. Our goal is to investigate this approach further and
verify its viability.

Acknowledgments We would like to deeply thank John
Mitchell for pointing out Matthew Flatt’s work and for his
helpful advice. We are grateful to the following persons
for their time and comments: the reviewers, Charles Petrie,
Constantine Sapuntzakis, Emre Kiciman, George Candea,
Iddo Lev, James Cutler, John Davis, and Shankar Pon-
nekanti. Finally, we thank France Telecom and our spon-
sors at the Stanford Network Research Center for support-
ing this research work.

References

[1] B. Verheecke, M. A. CibrnVerheecke. AOP for Dynamic
Configuration and Management of Web Services. The Inter-
national Conference on Web Services - Europe, 2003.

[2] M. Flatt. Programming Languages for Reusable Compo-
nents. Thesis, 1999.

[3] N. Wang, K. Parameswaran, D. Schmidt. The Design And
Performance of MetaProgramming Mechanisms for ORB
Middleware. Conference on Object-Oriented Technologies
and Systems, 2001.

[4] V. Tosic et al. Web Service Offerings Language (WSOL) and
Web Service Composition Management (WSCM). Work-
shop on Object-Oriented Web Services, Seattle, 2002.

[5] S. McIlraith et al. Semantic Web Services. IEEE Intelligent
Systems, Special Issue on the Semantic Web, Volume 16, No
2, pp46-53, March/April 2001.

[6] C. Petrie et al. Adding AI to Web Services. Agent Mediated
Knowledge Management, LNAI 2926, Springer 2004, 322-
338.

