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ABSTRACT
The cost and complexity of administration of large systems
has come to dominate their total cost of ownership. State-
less and soft-state components, such as Web servers or net-
work routers, are relatively easy to manage: capacity can
be scaled incrementally by adding more nodes, rebalanc-
ing of load after failover is easy, and reactive or proactive
(“rolling”) reboots can be used to handle transient failures.
We show that it is possible to achieve the same ease of
management for the state-storage subsystem by subdividing
persistent state according to the specific guarantees needed
by each type. While other systems [21, 19] have addressed
persistent-until-deleted state, we describe SSM, an imple-
mented store for a previously unaddressed class of state –
user-session state – that exhibits the same manageability
properties as stateless or soft-state nodes while providing
firm storage guarantees. In particular, any node can be
proactively or reactively rebooted at any time to recover
from transient faults, without impacting online performance
or losing data. We then exploit this simplified manageabil-
ity by pairing SSM with an application-generic, statistical-
anomaly-based framework that detects crashes, hangs, and
performance failures, and automatically attempts to recover
from them by rebooting faulty nodes as needed. Although
the detection techniques generate some false positives, the
cost of recovery is so low that the false positives have lim-
ited impact. We provide microbenchmarks to demonstrate
SSM’s built-in overload protection, failure management and
self-tuning. Finally, we benchmark SSM integrated into
a production enterprise-scale interactive service to demon-
strate that these benefits need not come at the cost of sig-
nificantly decreased throughput or response time.

1. INTRODUCTION
The cost and complexity of administration of systems is

now the dominant factor in total cost of ownership for both
hardware and software [34]. In addition, since human opera-
tor error is the source of a large fraction of outages [6], atten-
tion has recently been focused on simplifying and ultimately
automating administration and management to reduce the
impact of failures [14, 21], and where this is not fully pos-
sible, on building self-monitoring components [22]. How-
ever, fast, accurate detection of failures and recovery man-
agement remains difficult, and initiating recovery on “false
alarms” often incurs an unacceptable performance penalty;
even worse, initiating recovery on “false alarms” can cause
incorrect system behavior when system invariants are vio-
lated (e.g., only one copy of X should be running at a given

time) [22].
Operators of both network infrastructure and interac-

tive Internet services have come to appreciate the high-
availability and maintainability advantages of stateless and
soft-state [36] protocols and systems. The stateless Web
server tier of a typical three-tier service [4] can be man-
aged with a simple policy: misbehaving components can
be reactively or proactively rebooted, which is fast since
they typically perform no special-case recovery, or can be re-
moved from service without affecting correctness. Further,
since all instances of a particular type of stateless compo-
nent are functionally equivalent, overprovisioning for load
redirection [4] is easy to do, with the net result that both
stateless and soft-state components can be overprovisioned
by simple replication for high availability.

However, this simplicity does not extend to the stateful
tiers. Persistent-state subsystems in their full generality,
such as filesystem appliances and relational databases, do
not typically enjoy the simplicity of using redundancy to
provide failover capacity as well as to incrementally scale
the system. We argue that the ability to use these HA tech-
niques can in fact be realized if we subdivide “persistent
state” into distinct categories based on durability and con-
sistency requirements. This has in fact already been done
for several large Internet services [1, 33, 42, 30], because
it allows individual subsystems to be optimized for perfor-
mance, fault-tolerance, recovery, and ease-of-management.

In this paper, we make three main contributions:

1. We focus on user session state, which must persist for
a bounded-length user session but can be discarded af-
terward. We show why this class of data is important,
how its requirements are different from those for persis-
tent state, and how to exploit its consistency and work-
load requirements to build a distributed, self-managing
and recovery-friendly session state storage subsystem,
SSM. SSM provides a probabilistic bounded-durability
storage guarantee for such state. Like stateless or soft-
state components, any node of SSM can be rebooted
without warning and without compromising correct-
ness or performance of the overall application. No
node performs special-case recovery code. Additional
redundancy allows multiple simultaneous failures. As
a result, SSM can be managed using simple, “state-
less tier” HA techniques for incremental scaling, fault
tolerance, and overprovisioning.

2. We demonstrate the resulting simplicity of recov-
ery management by combining SSM with a generic
statistical-monitoring failure detection tool. Pinpoint



looks for “anomalous” behaviors (based on histori-
cal performance or deviation from the performance of
peer nodes) and immediately coerces any misbehav-
ing node to crash and reboot. Although false posi-
tives do occur, the simplicity and low cost of recov-
ery (crash and reboot) makes them a minor considera-
tion, greatly simplifying SSM’s failure detection and
management strategy. Combined with SSM’s addi-
tive increase/multiplicative decrease admission control
that protects it from being driven to saturation under
overload, the result is a largely self-managing subsys-
tem using entirely generic detection and recovery tech-
niques.

3. We summarize the design choices and lessons, along
with the system architecture requirements that allow
the approach to work, and highlight design principles
that can be applied to other systems.

In Section 2, we describe the properties of the subcategory
of session state on which we focus, as well as its associated
workload, and existing solutions. In Section 3, we present
the design and implementation of SSM, a recovery-friendly
and self-managing session state store. In Section 4, we de-
scribe the integration of SSM with Pinpoint to enable the
system to be self-healing. In Section 5, we present a se-
ries of benchmarks demonstrating the recovery-friendly and
self-managing features of SSM. In Section 6, we insert SSM
into an existing production internet application and com-
pare its performance, failure, and recovery characteristics
with the original implementation. In Section 7, we discuss
the general design principles extracted from the design and
implementation of SSM. We then discuss related and future
work, and then conclude.

2. WHY SESSION STATE?
In networking systems, signaling systems for flow state [9]

fall in between two extremes: hard-state and soft-state [35].
In hard-state systems, state is explicitly written once and
remains written unless explicitly removed; special mecha-
nisms exist to remove orphaned state. In contrast, in soft-
state systems, state automatically expires unless refreshed
by the writer, so no such special mechanisms are needed.
Session state lies somewhere in between: unlike hard state,
its maximum overall lifetime and inter-access interval are
bounded, so persistence guarantees need only respect those
bounds; unlike soft state, it cannot be reconstructed from
other sources if lost, unless the user is asked to repeat all
steps that led to the construction of the state.

Nearly all nontrivial Internet services maintain session
state, but they either store it as hard state because that
is what most storage systems provide, or store it ephemer-
ally (in RAM of otherwise stateless components) because
it is cheaper and faster. The former is overkill, the latter
does not provide adequate guarantees of persistence, espe-
cially in the face of transient failures. Table 2 compares and
contrasts the different types of state.

For the remainder of this paper, we will use the term
“session state” to refer to the subcategory of user-session

Hard/Persistent Soft/Session

Write Method Write once Refresh
Deletion Method Explicit Expiration
Orphan Cleanup Manual Automatic

Table 1: Key differences among hard, persistent, soft, and
session state.

state we now describe. Many associate session state with
“shopping cart,” but the class of session state we address
is significantly broader than just shopping carts. An ex-
ample of application session state that we address includes
user workflow state in enterprise applications. In particular,
today’s enterprise applications, such as those in J2EE [41],
are often accessed via a web browser. All application state,
such as context and workflow, is stored on the server and is
an example of what we are calling session state. In essence,
user workflow state in enterprise applications is equivalent to
temporary application state on a desktop application. An-
other example of session state is travel itineraries from on-
line travel sites, which capture choices that users have made
during the shopping process. Shopping carts, used in nearly
all online shopping sites, can also be an example of session
state.1

To understand how session state is typically used, we use
the example of a user working on a web-based enterprise-
scale application to illustrate the typical flow sequence. A
large class of applications, including J2EE-based and web
applications in general, use the interaction model below:

• User submits a request, and the request is routed to
a stateless application server. This server is part of
what is often called the middle-tier.

• Application server retrieves the full session state for
user (which includes the current application state).

• Application server runs application logic

• Application server writes out entire (possibly modi-
fied) session state

• Results are returned to the user’s browser

Session state is in the critical path of each interaction,
since user context or workflow is stored in session state. Loss
of session state is seen as an application failure to the end
user, which is usually considered unacceptable to the ser-
vice provider. Typical session state size is between 3K-200K
bytes [40].

Some important properties/qualities of the session state
we focus on are listed below. Session state:

1. Is accessed in a serial fashion by a single user (no con-
current access). Each user reads her own state, usu-
ally keyed by a deterministic function of the user’s ID,
so an advanced query mechanism to locate the user’s

1In practice, some e-commerce sites store shopping cart con-
tents in persistent state so that unpurchased items in the
cart will persist across visits



state is unnecessary. Furthermore, the client is typi-
cally responsible for storing the necessary metadata to
retrieve the state.

2. Is semi-persistent. Session state must be present for a
fixed interval T , the application-specific session time-
out (usually on the order of minutes to hours), but
should expire after T .

3. Is written out in its entirety, and usually updated on
every interaction.

Given these properties, the functionality necessary for a
session state store can be greatly simplified, relative to fully-
general ACID guarantees provided by a relational datbase.
Each simplification corresponds to an entry in the previous
numbered list:

1. No synchronization is needed. Since the access pattern
corresponds to an access of a single user making serial
requests, no conflicting accesses exist, and hence race
conditions on state access are avoided, which implies
that locking is not needed. In addition, a single-key
lookup API is sufficient. Since state is keyed to a par-
ticular user and is usually only accessed by that user,
a general query mechanism is not needed.

2. State stored by the repository need only be semi-
persistent – a temporal, lease-like [17] guarantee is suf-
ficient, rather than the durable-until-deleted guarantee
that is made in ACID [18].

3. Atomic update is sufficient for correctness, since par-
tial writes do not occur. Once session state is modified,
any of its previous values may be discarded.

Relative to the specific requirements of session state, SSM
does, in a sense, provide ACID guarantees: atomicity and
bounded durability are provided, and consistency and isola-
tion are made trivial by the access pattern.

As a generalization, the class of state that we address need
not necessarily be single-user; as long as state ownership is
explictly passed between parties, which is common in to-
day’s enterprise applications [23], the techniques discussed
in this paper applies.

2.1 Existing Solutions
Frequently, enterprises use either a relational database

(DB) or a filesystem or filesystem appliance (FS) to store
session state, because they already use a DB or FS for per-
sistent state. This potentially simplifies management, since
only one type of administrator is needed. However, there are
several drawbacks to using either a DB or FS, besides the
costs of additional licenses, which are detailed in previous
work [28].

In addition, DB and file systems are well-known to be
difficult to administer and tune. Each must be configured
and tuned for a particular workload. Even for a skilled and
costly administrator, this remains a difficult and often error-
prone process that is repeated as the workload changes.

In contrast, in-memory solutions avoid several of the
drawbacks of FS/DB, and are generally faster than FS/DB

Figure 1: Architecture of SSM. Stubs are stateless and

are used by application servers to read and write state.

Bricks are diskless components that store session state.

oriented solutions, but make it difficult to provide both per-
formance and correctness guarantees. Existing in-memory
solutions require a user to be pinned to a particular server,
which prevents the application-processing tier from remain-
ing truly stateless, since each server must both run appli-
cation logic and store session state. Because of pinning,
load-balancing can only be done across users but not across
requests, and hotspots are harder to alleviate. A detailed
discussion of in-memory solutions can be found in previous
work [27, 28].

3. PROPOSED SOLUTION: SSM
We now describe the design and implementation of SSM,

a lightweight session-state store. We make the following as-
sumptions about the operating environment, which are typ-
ical of large-scale services [4]: a physically secure cluster in-
terconnected by a commercially-available high-throughput,
low-latency system area network (SAN); and an uninter-
ruptible power supply to reduce the probability of a system-
wide simultaneous hardware outages. We assume that a
network partition is not possible. If a network partition oc-
curs, we assume it is likely that a catastrophic failure has
occurred; SSM is unable to recover from catastrophic faults.
The Java prototype consists of 872 semicolons and runs on
the UC Berkeley Millennium Cluster, consisting of 42 IBM
xSeries 330 1U rackmounted PCs, each running Linux 2.4.18
on Dual 1.0 GHz Intel Pentium III CPUs and 1.5GB ECC
PC133 SDRAM, connected via Gigabit Ethernet.

3.1 SSM Overview
SSM has two components: bricks and stubs. Bricks, each

consisting of a CPU, network interface and RAM (no disk),
provide storage; stubs dispatch read and write requests to
bricks. Figure 1 shows the basic architecture of SSM.

On a client request, the application server will first ask the
stub to read the client’s session state, and after application
processing, to write out the new session state. The general
strategy employed by the stub for both reads and writes is
“send to many bricks, wait for few to reply,” to avoid having
a request depend on any specific brick. Upon completion of
the write request, a cookie containing the ids of the bricks
that processed the write is sent back to the client.

A brick stores session state objects using an in-memory
hash table. Each brick sends out periodic multicast bea-
cons to indicate that it is alive. Each stub keeps track of
which bricks are currently alive by listening to the beacons;
stubs receive the announcements and make connections to



Figure 2: Internal structure for brick. S1, S2, and S3 are

threads that read incoming requests off of sockets from
stubs 1, 2 and 3, and place the requests into an inbox.

One main processing thread fetches requests from the

inbox, and maintains the internal data structures.

the bricks via TCP/IP. We choose TCP/IP as the commu-
nication mechanism for read/write request traffic because
reliable and ordered messaging enables easy prototyping.

When a stub contacts a brick, a stream is created between
the two, which lasts until either component ceases execut-
ing. Each brick has a list of streams corresponding to the
stubs that has contacted it. The brick has one main pro-
cessing thread, which fetches requests from a shared inbox,
and handles the request by manipulating the internal data
structures. A single monitor thread handles the internal
data structures. In addition, the brick has an additional
thread for each stub communicating with the brick; each
of these communication threads puts requests from the cor-
responding stub into the shared inbox. Figure 2 shows an
illustration of the brick thread structure.

The write function Write(HashKey H, Object v, Expiry E)

exported by the stub returns a cookie if the write succeeds
or throws an exception otherwise. The returned cookie is
passed back to the client (Web browser) for storage, as it
stores important metadata that will be necessary for the
subsequent read. Existing solutions for session state also
rely on storing this metadata on the client.

The read function Read(Cookie C, HashKey H) returns the
most recently written value for hash key H, or throws an
exception if the read fails. If a read/write returns to the
application, then it means the operation was successful. On
a read, SSM guarantees that the returned value is the most
recently written value by the user.

The stub dispatches write and read requests to the bricks.
Before we describe the algorithm describing the stub-to-
brick interface, let us define a few variables. Call W the
write group size. Call R the read group size. On a write
request, a stub attempts to write to W of the bricks; on a
read request, it attempts to read from R bricks.

Define WQ as the size of the write set, which is the min-
imum number of bricks that must return “success” to the
stub before the stub returns to the caller. WQ − 1 is the
number of simultaneous brick failures that the system can
tolerate before possibly losing data. R is the size of the
candidate read set; only 1 brick need to reply to service
a read request succesfully. Note that 1 ≤ WQ ≤ W and
1 ≤ R ≤ WQ. In practice, we use W = 3, WQ = 2, R = 2.

Lastly, call t the request timeout interval, the time that
the stub waits for a brick to reply to an individual request,

usually on the order of milliseconds. t is different from the
session expiration, which is the lifetime of a session state
object, usually on the order of minutes. We use t and timeout
interchangeably in this paper. In practice, t is a rough upper
bound on the time an application is willing to wait for the
writing and retrieval of a session state object, usually on the
order of tens to hundreds of milliseconds since session state
manipulation is in the critical path of client requests.

3.2 Basic Read/Write Algorithm
The basic write algorithm can be described as “write to

many, wait for a few to reply.” Conceptually, the stub writes
to more bricks than are necessary, namely W , and only waits
for WQ bricks to reply. Sending to more bricks than are nec-
essary allows us to harness redundancy to avoid performance
coupling; a degraded brick will not slow down a request. In
the case where WQ bricks do not reply within the timeout,
the stub throws an exception so that the caller can handle
the exception and act accordingly (e.g., signal to the end
user to come back later), rather than being forced to wait
indefinitely. This is part of the system applying backpres-
sure. The algorithm is described below:

Cookie Write(HashKey H, Object v, Expiry E)
throws SystemOverloadedException

0 Time wakeup = getCurrentTime() + timeout;
1 int cs = checksum(H, v, E);
2 Brick[] repliedBricks = {};
3 Brick[] targetBricks = chooseRandomBricks(W);
4 foreach brick in targetBricks
5 do WriteBrick(H, v, E, cs);
6 while (repliedBricks.size < WQ)
7 Time timeleft = wakeup - getCurrentTime();
8 Brick replied = receiveReply(timeleft);
9 if (replied == null) break;
10 repliedBricks.add(replied);
11 if (repliedBricks.size < WQ)
12 throw new SystemOverloadedException();
13 int check = checksum(H, repliedBricks, cs, E);
14 return new Cookie(check, H, repliedBricks, cs, E);

The stub handles a read by sending the read to R bricks,
waiting for only 1 brick to reply:

Object Read(Cookie c) throws CookieCorruptedExcept,
SystemOverloadedExcept, StateExpiredExcept,
StateCorruptedExcept

0 int check = c.checksum;
1 int c2 = checksum(c.H, c.repliedbricks, c.cs, c.E);
2 if (c2 != check)
3 throw new CookieCorruptedException();
4 if (isExpired(c.E))
5 throw new StateExpiredException();
6 Brick[] targetBricks = c.repliedBricks;
7 foreach brick in targetBricks
8 do RequestBrickRead(H, E, cs);
9
10 Brick replied = receiveReply(timeout);
11 if (replied == null)
12 throw new SystemOverloadedException();
13 retval = replied.objectValue;
14 if (c.cs != checksum(retval))
15 throw new StateCorruptedException();
16 return retval;

3.3 Garbage Collection
For garbage collection of bricks, we use a method seen in

generational garbage collectors [8]. For simplicity, earlier we



described each brick as having one hash table. In reality, it
has a set of hash tables; each hash table has an expiration. A
brick handles writes by putting state into the table with the
closest expiration time after the state’s expiration time. For
a read, because the stub sends the key’s expiration time,
the brick knows which table to look in. When a table’s
expiration has elapsed, it is discarded, and a new one is
added in its place with a new expiration.

3.4 Load capacity discovery and admission
control

In addition to the basic read/write algorithm, each stub
maintains a sending window (SW) for each brick, which the
stub uses to determine the maximum number of in-flight,
non-acked requests the stub can send to the recipient brick.

The stub implements a additive-increase, multiplicative-
decrease (AIMD) algorithm for maintaining the window; the
window size is additively increased on a successful ack and
multiplicatively decreased on a timeout. When a request
times out, the stub reduces its sending window to the brick
accordingly. In the case when the number of in-flight mes-
sages to a brick is equal to the SW, any subsequent requests
to that brick will be disallowed until the number of in-flight
messages for that brick is less than the SW. If a stub cannot
find a suitable number of bricks to send the request to, it
throws an exception to the caller indicating that the system
is overloaded.

Each stub stores temporary state for only the requests
that are awaiting responses from bricks. The stub performs
no queueing for incoming requests from clients. For any
request that cannot be serviced because of overload, the
stub rejects the request immediately, throwing an exception
indicating that the system is temporarily overloaded.

In addition, each brick performs admission control; when
a request arrives at the brick, it is put in a queue. If the
request timeout has elapsed by the time that the brick has
dequeued the request, the request is disregarded and the
brick continues to the service the next queued request.

Note that the windowing mechanism at the stub and the
request rejection at the brick protect the system in two dif-
ferent ways. At the stub, the windowing mechanism pre-
vents any given stub from saturating the bricks with re-
quests. However, even with the windowing mechanism, it is
still possible for multiple stubs to temporarily overwhelm a
brick (e.g. the brick begins garbage collection and can no
longer handle the previous load). At the brick, the request
rejection mechanism allows the brick to throw away requests
that have already timed out in order to “catch up” to the
requests that can still be serviced in a timely manner.

3.5 Failure and Recovery
In SSM, recovery of any component that has failed is sim-

ple; a restart is all that is necessary to recover from a non-
persistent failure. No special case recovery code is necessary.

On failure of a client, the user perceives the session as lost,
e.g., if the browser crashes, a user does not necessarily expect
to be able to resume his interaction with a web application.
If cookies for the client are persisted, as is often the case,
then the client may be able to resume his session when the

browser is restarted.
On failure of a stateless application server, a restart of

the server is sufficient for recovery. After restart, the stub
on the server detects existing bricks from the beacons and
can reconstruct the table of live bricks. The stub can im-
mediately begin handling both read and write requests; to
service a read request, the necessary metadata is provided
by the client in the cookie. To service a write request, all
that is required is a list of WQ live bricks.

On failure of a brick, a simple restart of the brick is suffi-
cient for recovery. The contents of its memory are lost, but
since each hash value is replicated on WQ− 1 other bricks,
no data is lost. The next update of the session state will re-
create WQ new copies; if WQ − 1 additional failures occur
before then, data may be lost. Section 3.7 sketches an anal-
ysis of the minimum required mean-time-to-failure (MTTF)
of a brick to achieve a given level of availability under these
assumptions.

A side effect of having simple recovery is that clients,
servers, and bricks can be added to a production system to
increase capacity. For example, adding an extra brick to an
already existing system is easy. Initially, the new brick will
not service any read requests since it will not be in the read
group for any requests. However, it will be included in new
write groups because when the stub detects that a brick is
alive, the brick becomes a candidate for a write. Over time,
the new brick will receive an equal load of read/write traf-
fic as the existing bricks, since load balancing is done per
request and not per hash key.

3.6 Recovery Philosophy
Previous work has argued that rebooting is an appealing

recovery strategy in cases where it can be made to work [7]:
it is simple to understand and use, reclaims leaked resources,
cleans up corrupted transient operating state, and returns
the system to a known state. Even assuming a component is
reboot-safe, in some cases multiple components may have to
be rebooted to allow the system as a whole to continue oper-
ating; because inter-component interactions are not always
fully known, deciding which components to reboot may be
difficult. If the decision of which components to reboot is
too conservative (too many components rebooted), recovery
may take longer than really needed. If it is too lenient, the
system as a whole may not recover, leading to the need for
another recovery attempt, again resulting in wasted time.

By making recovery “free” in SSM, we largely eliminate
the cost of being too conservative. If an SSM brick is sus-
pected of being faulty – perhaps it is displaying fail-stutter
behavior [3] or other characteristics associated with software
aging [15] – there is essentially no penalty to reboot it pro-
phylactically. This can be thought of as a special case of
fault-model enforcement: treat any performance fault in an
SSM brick as a crash fault, and recover accordingly. In re-
cent terminology, SSM is a crash-only subsystem [7].

3.7 Brick MTTF vs. Availability
Before presenting experimental results, we illustrate the

relationship between MTTF for an individual brick and the
availability of data for SSM as a whole. We assume indepen-



Figure 3: Probability of data loss with WQ=2 and 3.
The x-axis is the ratio of MTTF to the session expiration

time. The y-axis is the probability that all WQ copies

are lost before the subsequent write.

dent failures; when failures are correlated in Internet server
clusters, it is often the result of a larger catastrophic failure
that session state would not be expected to survive [22]. We
describe a natural extension to SSM to survive site failures
in section 8.

Let brick failure be modeled by a Poisson process with rate
µ (i.e., the brick’s MTTF is 1/µ), and let writes for a partic-
ular user’s data be modeled by a Poisson process with rate
λ. (In other words, in practice 1/λ is the session expiration
time, usually on the order of minutes or tens of minutes.)
Then ρ = λ/µ is intuitively the ratio of the write rate to
the failure rate, or equivalently, the ratio of the MTTF of a
brick vs. the write interarrival time.

A session state object is lost if all WQ copies of it are
lost. Since every successful write re-creates WQ copies of
the data, the object is not lost if at most WQ − 1 failures
occur between successive writes of the object. Equations 1
and 2 show this probability for WQ = 3 and WQ = 2
respectively; figure 3 shows the probabilities graphically.

P WQ=3

noloss =
ρ(ρ2 + 6ρ + 11)

(ρ + 1)(ρ + 2)(ρ + 3)
(1)

P WQ=2

noloss =
ρ(ρ + 3)

(ρ + 1)(ρ + 2)
(2)

Table 2 summarizes the implication of the equations in
terms of “number of nines” of availability. For example,
to achieve “three nines” of availability, or probability 0.999
that data will not be lost, a system with WQ = 2 must be
able to keep an individual brick from crashing for an interval
that is 43.3 times as long as the average time between writes.
Adding redundancy (WQ = 3) reduces this, requiring an
MTTF that is only 16.2 times the average time between
writes. For example, if the average time between writes is 5
minutes and WQ = 3, three nines can be achieved as long
as brick MTTF is at least 81 minutes.

Another way to look at it is to fix the ratio of MTTF
to the write interval. Figure 4 sets this ratio to 10 (intu-
itively, this means roughly that writes occur ten times as
often as failures) and illustrates the effect of adding redun-

WQ = 2 WQ = 3

1 Nine 3 2
2 Nines 12.7 6.5
3 Nines 43.3 16.2
4 Nines 140 37.2
5 Nines 446.8 82.4

Table 2: For WQ=2 and 3, the necessary ratio of MTTF to
average interval between writes in order for probability of a sub-
sequent write to achieve a certain number of nines

Figure 4: We fix the ratio of MTTF to the average inter-

val between writes to 10. The x-axis represents the num-

ber of copies written. The y-axis represents the proba-

bility that all copies are lost.

dancy (modifying WQ) on data loss.

4. PINPOINT + SSM = SELF-HEALING
Pinpoint is a framework for detecting likely failures in

componentized systems. To detect failures, a Pinpoint
server dynamically generates a model of the “good behav-
ior” of the system. This good behavior is based on both
the past behavior and the majority behavior of the system,
under the assumption that most of the time, most of the
system is likely to be behaving correctly.

When part of the system deviates from this believed good
behavior, Pinpoint interprets the anomaly as a possible
failure. Once Pinpoint notices a component generating a
threshold number of these anomalies, Pinpoint triggers a
restart of the component.

To detect failures in bricks, Pinpoint monitors each brick’s
vital statistics, shown in Table 3. Each brick sends its
own statistics to the Pinpoint server at one-second intervals.
Statistics are divided into activity and state statistics.

Activity statistics, e.g., the number of processed writes,
represent the rate at which a brick is performing some ac-
tivity. When Pinpoint receives an activity statistic, it com-
pares it to the statistics of all the other bricks, looking for
highly deviant rates. Because we want to be able to run
SSM on a relatively small number of nodes, we calculate the
median absolute deviation of the activity statistics. This
metric is robust to outliers even in small populations, and
lets us identify deviant activity statistics with a low-false
positive rate.



Statistic Description Type

NumElements Number of objects stored State
MemoryUsed Total memory used State
InboxSize Size of Inbox in last second State
NumDropped Dropped request in last second Activity
NumReads Reads processed in last second Activity
NumWrites Writes processed in last second Activity

Table 3: Statistics reported to Pinpoint by Brick

State statistics represent the size of some state, such as
the size of the message inbox. In SSM, these state statistics
often vary in periodic patterns, e.g., in normal behavior, the
MemoryUsed statistic grows until the garbage collector is
triggered to free memory, and the pattern repeats. Unfor-
tunately, we do not know a priori the period of this pattern
– in fact, we cannot even assume a regular period.

To discover the patterns in the behavior of state statistics,
we use the Tarzan algorithm for analyzing time series [25].
For each state statistic of a brick, we keep an N-length his-
tory or time-series of the state. We discretize this time-
series into a binary string. To discover anomalies, Tarzan
counts the relative frequencies of all substrings shorter than
k within these binary strings. If a brick’s discretized time-
series has a surprisingly high or low frequency of some sub-
string as compared to the other brick’s time series, we mark
the brick as potentially faulty. This algorithm can be im-
plemented in linear time and linear space, though we have
found we get sufficient performance from our simpler non-
linear implementation.

Once a brick has been identified as potentially faulty
through three or more activity and state statistics, we con-
clude that the brick has indeed failed in some way; Pin-
point restarts the node. In the current implementation, a
script is executed to restart the appropriate brick, though a
more robust implementation might make use of hardware-
based leases that forcibly reboot the machine when they
expire [11].

Because restarting a brick will only cure transient failures,
if Pinpoint detects that a brick has been restarted more
than a threshold number of times in a given period, which
is usually indicative of a persistent fault, it can take the
brick off-line and notify an administrator.

5. EXPERIMENTAL RESULTS
In this section, we highlight some of the key features from

the design of SSM. We present benchmarks illustrating each
of the recovery-friendly, self-tuning, and self-protecting fea-
tures of SSM. We also present numerous benchmarks demon-
strating the self-healing nature of SSM when integrated with
Pinpoint.

Each benchmark is conducted on the UC Berkeley Mil-
lennium Cluster. Our load generator models hyperactive
users who continually make requests to read and write ses-
sion state; each hyperactive user is modeled using a thread
which does a sequence of alternating write and read requests,
which is representative of the workload for session state,

as described earlier in Section 2. As soon as a request re-
turns, the thread immediately makes a subsequent request.
In the following benchmarks, we vary the number of sending
threads as well as the number of bricks. All bricks are run
on separate, dedicated machines.

5.1 Recovery-Friendly
In a sufficiently-provisioned, non-overloaded system, the

failure and recovery of a single brick does not affect:

• Correctness. As described above, the failure of a single
brick does not result in data loss. In particular, SSM
can tolerate WQ−1 simultaneous brick failures before
losing data.

A restart of the brick does not impact correctness of
the system.

• Performance. So long as W is chosen to be greater
than WQ and R is chosen to be greater than 1, any
given request from a stub is not dependent on a par-
ticular brick. SSM harnesses redundancy to remove
coupling of individual requests to particular bricks.

A restart of the brick does not impact performance;
there is no special case recovery code that must be
run anywhere in the system.

• Throughput. A failure of any individual brick does
not degrade system throughput in a non-overloaded
system. Upon first inspection, it would appear that all
systems should have this property. However, systems
that employ a buddy system or a chained clustering
system [19, 26] fail to balance the resulting load evenly.
Consider a system of four nodes A, B, C, and D, where
A and B are buddies, and C and D are buddies. If
each node services load at 60 percent of its capacity
and subsequently, node D fails, then its buddy node C
must attempt to service 120 percent of the load, which
is not possible. Hence the overall system throughput
is reduced, even though the remaining three nodes are
capable of servicing an extra 20 percent each.

In SSM, because the resulting load is distributed
evenly between the remaining bricks, SSM can con-
tinue to handle the same level of throughput so long
as the aggregate throughput from the workload is lower
than the aggregate throughput of the remaining ma-
chines.

The introduction of a new brick or a revived brick
never decreases throughput; it can only increase
throughput, since the new brick adds new capacity to
the system. A newly restarted brick, like every other
brick, has no dependencies on any other node in the
system.

• Availability. In SSM, all data is available for reading
and writing during both brick failure and brick recov-
ery. In other systems such as unreplicated file systems,
data is unavailable for reading or writing during fail-
ure. In DDS [19] and in Harp [29], data is available for
reading and writing after a node failure, but data is



not available for writing during recovery because data
is locked and is copied to its buddy en masse.

This benchmark is intended to show the recovery-friendly
aspect of SSM. In this benchmark, W is set to 3, WQ is set
to 2, timeout is set to 60 ms, R is set to 2, and the size of
state written is 8K.

We run four bricks in the experiment, each on a different
physical machine in the cluster. We use a single machine
as the load generator, with ten worker threads generating
requests at a rate of approximately 450 requests per second.

Figure 5: SSM running with 4 Bricks. One brick is killed
manually at time 30, and restarted at time 40. Through-

put and availability are unaffected. Although not dis-

played in the graph, all requests are all fulfilled correctly,

within the specified timeout.

We induce a fault at time 30 by killing a brick by hand.
As can be shown from the graph, throughput remains un-
affected. Furthermore, all requests complete successfully;
the load generator showed no failures. This microbench-
mark is intended to demonstrate the recovery-friendly as-
pect of SSM. In a non-overloaded system, the failure and
recovery of a brick has no negative effect on correctness,
system throughput, availability, or performance. All gener-
ated requests completed within the specified timeout, and
all requests returned successfully.

5.2 Self-Tuning
The use of AIMD allows the stubs to adaptively discover

the capacity of the system, without requiring an adminis-
trator to configure a system and a workload, and then run
experiments to determine whether the system services the
workload in an acceptable fashion. In the manual process,
if the workload increases drastically, the configuration may
need to be changed.

In SSM, the allowable amount of time for session state
retrieval and storage is specified in a configurable timeout
value. The system tunes itself using the AIMD mecha-
nism, maximizing the number of requests that can be ser-
viced within that time bound. SSM automatically adapts to
higher load gracefully. Under overload, requests are rejected
instead of allowing latency to increase beyond a reasonable
threshold. If SSM is is deployed in an environment with a
pool of free machines, Pinpoint can monitor the number of
requests that are rejected, and start up new bricks to acco-
modate the increase in workload.

This benchmark is intended to show that SSM discovers
the maximum throughput of the system correctly. Recall

that in SSM, read and write requests are expected to com-
plete within a timeout. We define goodput as the number
of requests that complete within the specified timeout. Of-
fered load is goodput plus all requests that fail. Requests
that complete after that timeout are not counted toward
goodput. In this benchmark, W is set to 3, WQ is set to 2,
timeout is set to 60 ms, R is set to 1, and the size of state
written is 8K. We use 3 bricks.

First, we discover the maximum goodput of the basic sys-
tem with no admission control or AIMD. We do so by vary-
ing the number of sending threads to see where goodput
plateaus. We run separate experiments; first we generate
a load with 120 threads corresponding to roughly 1900 re-
quests per second, and then with 150 threads, corresponding
to roughly 2100 requests per second. Figure 6 shows that
goodput plateaus around 1900-2000 requests per second.

Figure 6: SSM running with 3 Bricks, no AIMD or ad-

mission control. The graph on the left shows a load of

120 threads sending read and write requests of session

state. The graph on the right shows a load of 150 threads.
sending threads. System throughput peaks at around

1900-2000 requests per second.

We continue increasing the load until goodput drops to
zero. Goodput eventually drops to zero because the rate
of incoming requests is higher than the rate at which the
bricks can process, and eventually, the brick spends all of
its time fulfilling timed-out requests instead of doing useful
work. As can be seen in the lightened portion of Figure 7,
the bricks collapse under the load of 220 threads, or about
3400 requests a second; requests arrive at a rate faster than
can be serviced, and hence the system goodput falls to zero
at time 11.

Figure 7: SSM running with 3 Bricks, no AIMD or ad-

mission control. The bricks collapse at time 11 under

the load of 220 threads generating requests.

After manually verifying the maximum goodput of the
system, we turn on the self-protecting features, namely by
allowing the stub to use the AIMD sending window size and
by forcing bricks to service only requests that have not timed



out, and run the experiment again.
We generate an even higher load than what caused good-

put to fall to zero in the basic system, using 240 threads,
corresponding to roughly 4000 requests per second. As seen
in figure 8, SSM discovers the maximum goodput and the
system continues to operate at that level. Note that this
means that the system is rejecting the excess requests, since
the bricks are already at capacity, and the excess load is
simply being rejected; the percentage of rejected requests
is discussed in the next section. We sketch a simple and
reasonable shedding policy in future work.

Figure 8: SSM running with 3 Bricks, with AIMD and

admission control. SSM discovers maximum goodput of

around 2000.

5.3 Self-Protecting
SSM protects its components from collapsing under over-

load. The use of AIMD and admission control allow SSM to
protect itself. In particular, the maximum allowable pending
non-acked requests that a stub can generate for a particular
brick is regulated by the sending window size, which is addi-
tively increased on success and multiplicatively decreased on
failure. This prevents the stubs from generating load that
results in brick overload; each stub exerts backpressure [43]
on its caller when the system is overloaded. In addition,
bricks actively discard requests that have already timedout,
in order to service only requests that have the potential of
doing useful work.

This benchmark is intended to show that SSM protects
itself under overload. Part of the self-protecting aspect of
SSM is demonstrated in the previous benchmark; SSM’s
goodput does not drop to zero under heavier load. In this
benchmark, W is set to 3, WQ is set to 2, timeout is set to
60 ms, R is set to 1, and the size of state written is 8K.

SSM’s use of the self-protecting features allows SSM to
maintain a reasonable level of goodput under excess load.
Figure 9 shows the steady state graph of load vs. goodput
in the basic system without the self-protecting features. Fig-
ure 10 shows the steady state graph of load vs. goodput in
SSM with the self-protecting features enabled. The x-axis
on both graphs represents the number of load-generating
machines; each machine runs 12 threads. The y-axis repre-
sents the number of requests. We start with the load gener-
ator running on a single machine, and monitor the goodput
of SSM after it has reached steady state. Steady state is
usually reached in the first few seconds, but we run each
configuration for 2 minutes to verify that steady state be-

havior remains the same. We then repeat the experiment by
increasing the number of machines used for load generation.

Comparison of the two graphs shows two important
points:

• The self-protecting features protect the system from
overload and falling off the cliff and allows the system
to continue to do useful work.

• Extends useful life of the system under overload.
Without the self-protecting features, we see that max-
imum goodput is around 1900 requests per second,
while goodput drops to half of that at a load of 13 ma-
chines, and falls to zero at 14 machines. With the self-
protecting features, maximum goodput remains the
same, while goodput drops to half of the maximum
at 24 machines, and goodput trends to zero at 37 ma-
chines, because SSM begins spending the bulk of its
processing time trying to protect itself and turning
away requests and is unable to service any requests
successfully. With self-protecting features turned on,
the system continues to produce half of goodput at 24
machines vs. 13 machines, protecting the system from
almost double the load.

Note that in Figure 9 where goodput has dropped to zero,
as we increase the number of machines generating load that
the offer load increases only slightly, staying around 1500
failed requests per second. This is because each request must
wait the full timeout value before returning to the user; the
requests that are generated will arrive at the bricks, but will
not be serviced in time. However, in Figure 10, the number
of failed requests increases dramatically as we increase the
number of machines. Recall that the load generator models
hyperactive users that continually send read and write re-
quests; each user is modeled by a thread. When one request
returns, either successfully or unsuccessfully, the thread im-
mediately generates another request. Because SSM is self-
protecting, the stubs say “no” to requests right away; under
overload, requests are rejected immediately. The nature of
the load generator then causes another request to be gener-
ated, which is likely to be rejected as well. Hence the load
generator continues to generate requests at a much higher
rate than in Figure 9 because unfulfillable requests are im-
mediately rejected.

5.4 Self-Healing
The ability of a system to heal itself without requiring ad-

ministrator assistance greatly simplifies management. How-
ever, accurate detection of faults is difficult. Usually, acting
on an incorrect diagnosis such as a false positive results in
degraded system performance, availability, correctness, or
throughput. In SSM, the ability to reboot any component
without affecting correctness and availablility, and to a de-
gree, performance and throughput, coupled with a generic
fault-detecting mechanism such as Pinpoint, gives rise to a
self-healing system.

As discussed earlier, in SSM, a single brick can be
restarted without affecting correctness, performance, avail-
ability, or throughput; the cost of acting on a false positive



Figure 9: Steady state graph of load vs. goodput. SSM
running without self-protecting features. Goodput peaks

at around 1900 requests per second. Half of system good-

put is reached at 13 load generating machines, and sys-
tem goodput drops to 0 at 14 machines.

Figure 10: Steady state graph of load vs. goodput. SSM
running with self-protecting features. Goodput peaks at

around 1900 requests per second. Half of system good-

put is reached at 24 load generating machines, and sys-

tem goodput trends to 0 at 37 machines.

on SSM is very low, so long as the system does not make
false positive errors with too high a frequency. For transient
faults, Pinpoint can detect anomalies in brick performance,
and restart bricks accordingly.

The following microbenchmarks demonstrate SSM’s abil-
ity to recover and heal from transient faults. We at-
tempt to inject realistic faults for each of SSM’s hard-
ware components—processor, memory, and network inter-
face. We assume that for CPU faults, the brick will hang or
reboot, as is typical for most such faults [20].

To model transient memory errors, we inject bitflip errors
into various places in the brick’s address space. To model a
faulty network interface, we use FAUMachine [10], a Linux-
based VM that allows for fault-injection at the network level,
to drop a specified percentage of packets. We also model
performance faults, where one brick runs more slowly than
the others. In all of the following experiments, we use six
bricks; Pinpoint actively monitors all of the bricks.

Obviously, restarting a brick does not cure a persistent
fault. Although we model only transient faults, Pinpoint
can keep track of the number of times a particular brick has
been rebooted in a certain time interval, and shut the brick
down or notify an administrator completely if it exceeds a
threshold number of restarts.

5.5 Memory Fault in Stack Pointer

This benchmark is intended to show the self-healing na-
ture of SSM under the presence of a memory fault; perfor-
mance and throughput is unaffected, and SSM recovers from
the fault.

Using ptrace(), we monitor a child process and change
its memory contents. In this benchmark, W = 3, WQ =
2, R = 2, data size is 8KB, and we increase t to 100ms to
account for the slowdown of bricks using ptrace. Figure 11
shows the results of injecting a bitflip in the area of physical
memory where the stack pointer is held. The fault is injected
at time 14; the brick crashes immediately. The lightened
section of figure 11 (time 14-23) is the time during which
only five bricks are running. At time 23, Pinpoint detects
that the brick has stopped sending heartbeats and should
be restarted, and restarts the brick; the system tolerates
the fault and successfully recovers from it.

Figure 11: Fault Injection: Memory Bitflip in Stack

Pointer.

5.6 Memory Fault in Data Value/Checksum
This benchmark is intended to show the self-healing na-

ture of SSM under the presence of a memory fault in its
internal data structures. Figure 12 shows the injection of a
bitflip in the object of a session state object that has just
been written and is about to be read. The fault is injected
at time 18. The brick is configured to exit upon the detec-
tion of a checksum error, and does so immediately at time
18. The lightened section of figure 12 (time 18-29) is the
time during which only five bricks are running. At time 29,
Pinpoint detects that the brick has stopped sending heart-
beats and should be restarted, and restarts the brick; the
system tolerates the fault and successfully recovers from it.

Figure 12: Fault Injection: Memory Bitflip in hashtable



5.7 Network Performance Fault
This benchmark is intended to show that SSM can tol-

erate and recover from transient network faults. We use
FAUMachine to inject a fault at the brick’s network inter-
face. In particular, we cause the brick’s network interface
to drop 70 percent of all outgoing packets. Figure 13 shows
this experiment running on FAUmachine. Note that FAU-
machine overhead causes the system to perform an order of
magnitude slower; we run all six bricks on FAUMachine. In
this benchmark, W = 3, WQ = 2, R = 2, and we increase t
to 700ms and decrease the size of the state written to 3KB
to adjust to the order of magnitude slowdown.

Figure 13: Fault Injection: Dropping 70 percent of out-

going packets. Fault injected at time 35, brick killed at
time 45, brick restarted at time 70.

The fault is injected at time 35; however, the brick contin-
ues to run with the injected fault for 10 seconds, as shown
in the darkened portion of figure 13. At time 45, Pinpoint
detects and kills the faulty brick. The fault is cleared to
allow network traffic to resume as normal, and the brick
is restarted. Restart takes significantly longer using the
FAUMachine, and the brick completes its restart at time
70. During the entire experiment, all requests complete cor-
rectly in the specified timeout and data is available at all
times. Throughput is affected slightly, as expected, as only
five bricks are functioning during times 45-70; recall that
running bricks on FAUMachine causes an order of magni-
tude slowdown.

5.8 CPU/Memory Performance Fault
SSM is able to tolerate performance faults, and Pinpoint

is able to detect performance faults and reboot bricks ac-
cordingly. In the following benchmark with 6 bricks and 3
load-generating machines, we inject performance failures in
a single brick by causing the brick to sleep for 1ms before
handling each message. This per-message performance fail-
ure simulates software aging. In figure 14, we inject the fault
every 60 seconds. Each time the fault is injected, Pinpoint
detects the fault within 5-10 seconds, and reboots the brick.
All requests are serviced properly.

6. END TO END APPLICATION BENCH-
MARKS

In this section, we integrate SSM with a production,
enterprise-scale application. We also modify the application
to use disk to store session state, as a baseline comparison.

Figure 14: Performance Fault: Brick adds 1ms sleep be-
fore each request; faults injected every 60 seconds, Pin-

point detects failure within 5-10 seconds, and brick is

restarted.

We compare the integrated solution with the unmodified ap-
plication, as well as the application modified to use disk to
store session state.

The application we use is a simplified version of
Tellme’s [31] Email-By-Phone application; via the phone,
users are able to retrieve their email and listen to the head-
ers of various folders by interacting with voice-recognition
and voice-synthesis systems integrated with the email server.
The application logic itself is written in Java and run on
Resin [37], an XML application server on top of a dual pro-
cessor Pentium III 700 MHz machine with 1G RAM, running
Solaris. We use 3 bricks for the benchmark. All machines
are connected via switched ethernet, and held in a commer-
cial hosting center.

Session state in this application consists of the index of
the message the user is currently accessing, the name of the
folder that is currently being accessed, and other workflow
information about the user’s folders. In the original appli-
cation, the session state is stored in memory only; a crash
of the application server implies a loss of all user sessions,
and a visible application failure to all active users.

We use Silk Performer [39] to generate load to the appli-
cation. The load generator simulates users that start the ap-
plication, listen to an email for three seconds, and progress
to the next email, listening to a total of 20 emails. The
test is intended to establish a baseline for response time
and throughput for the unmodified application. We vary
the load from ten users to 160 users; at 170 users, the ap-
plication server begins throwing “Server too busy” errors.
Unmodified, the application server can handle 160 simulta-
neous users, average a response time of 0.793 seconds.

We modify the application to write session state to disk, to
establish comparison values for an external persistent state
store. We simply write out the user’s session state to a file
on disk. The modified application reaches capacity at 120
simultaneous users, with an average response time of 1.716
seconds.

Lastly, we integrate SSM with the application to store
state. Three other machines are configured as bricks. A
switch sits between the three bricks and the application
server. The integrated application reaches capacity at 120
simultaneous users, with an average response time of 0.863



Figure 15: Latency vs. load for 10 to 160 users. The origi-

nal application can handle a capacity of 160 simultaneous

users. The modified application using disk or using SSM

can each handle 120 users.

seconds.
Figure 15 summarizes the results. Compared to storing

session state in-memory-only, using our prototype of SSM
imposes a 25 percent throughput penalty on the overall ap-
plication: the maximum number of simultaneous users is
reduced from 160 to 120, although the per-user response
times are roughly equal in the two cases, so users perceive
no latency penalty.

Compared to using a filesystem, SSM supports just as
many concurrent users, but delivers better response time:
with 120 active users, the application using disk runs more
than twice as slowly as the application using SSM.

In summary, integrating SSM with the application im-
poses a 25 percent throughput overhead compared to in-
memory-only, but preserves throughput and delivers better
response time than the disk solution. Neither the in-memory
nor the filesystem solution provide SSM’s high availability,
self-recovery and self-healing.

7. DISCUSSION
SSM bricks can be built from simple commodity hard-

ware. From a few months experience working with SSM,
bricks perform very predictably, which in turn allows detec-
tion of anomalies to be extremely simple and accurate. In
this section we try to distill what properties of SSM’s design
and algorithms give rise to these properties.

7.1 Eliminate Coupling
In SSM, we have attempted to eliminate all coupling be-

tween nodes. Bricks are independent of other bricks, which
are independent of stubs. Stubs are independent of all other
stubs; each stub is regulated by an AIMD sending window
which prevents it from saturating the system.

In traditional storage systems, a requestor is coupled to
a requestee, and the requestor’s performance, correctness,
and availability are all dependent on the requestee. SSM
instead uses single-phase, non-locking operations, allowing
writes to proceed at the speed of the fastest WQ bricks
instead of being coupled to lagging or failing bricks. Among
other things, this makes lengthy garbage collection times
unimportant, since a brick performing GC can temporarily
fall behind without dragging down the others.

Elimination of coupling comes at a cost: redundancy is

harnessed for performance. Redundant components with re-
duced coupling gives rise to predictable performance. Cou-
pling elimination has been used in various contexts [21, 13,
5].

Related to coupling is the use of both randomness to avoid
deterministic worst cases and overprovisioning to allow for
failover. Both techniques are used in large-system load bal-
ancing [4], but SSM does this at a finer grain, in the selection
of the write set for each request.

In the initial implementation of SSM, use of third-party
libraries led us to violate our own guideline. We attempted
to use a commercially-available JMS (Java Messaging Ser-
vice) implementation that used a single machine as a mes-
sage router, quickly becoming a scaling bottleneck. We ul-
timately discarded JMS in favor of using TCP directly.

7.2 Make Parts Interchangeable
For a write in SSM, any given brick is as good as any other

in terms of correctness. For a read, a candidate set of size R
is provided, and any brick in the candidate set can function
in the place of any other brick. The introduction of a new
brick does not adversely disrupt the existing order; it only
serves to increase availability, performance, and throughput.

In many systems, certain nodes are required to fulfill cer-
tain fixed functions. This inflexibility often causes perfor-
mance, throughput or availability issues, as evidenced in
DDS [19], which uses the buddy system.

In SSM, bricks are all equivalent. Because complete copies
of data are written to multiple bricks, bricks can operate in-
dependently, and do not require any sort of coordination.
Furthermore, as long as one brick from the write quota of
size WQ remains, the data is available, unlike in erasure cod-
ing systems such as Palimpsest [38], where a certain number
of chunks is required to reconstruct data.

7.3 It’s OK to Say No
SSM uses both adaptive admission control and early rejec-

tion as forms of backpressure. AIMD is used to regulate the
maximum number of requests a stub can send to a particu-
lar brick; each brick can reject or ignore timed-out requests;
the application of TCP, a well-studied and stable networking
protocol, allows SSM components to reach capacity without
collapse [43]. The goal of these mechanisms is to avoid hav-
ing SSM attempt to give a functionality guarantee (“I will
do it”) at the expense of predictable performance; the result
is that each request requires a predictable amount of work.

Once again, we inadvertently violated our own principle at
a lower layer. Recall that each stub maintains a list of bricks
it believes to be alive. An ObjectOutputStream is used to com-
municate with each such brick. In the initial implementation
of the stubs, when a network fault was injected at a brick,
the call to ObjectOutputStream::WriteObject() would block
until the write succeeded or an error was thrown. Since this
blocked thread holds the mutex for the stream, all other
threads attempting to write to the stream are blocked as
well; eventually, all threads become blocked. The stub im-
plementation was subsequently modified so that the calling
thread puts the read or write request in an outbox, and a
separate thread handles the actual write; the outbox then



becomes another backpressure point.

7.4 It’s OK to Make Mistakes
The result of the application of redundancy and the inter-

changeability of components is that recovery is fast, simple,
and unintrusive: a brick is recovered by rebooting it without
worrying about preserving its pre-crash state, and recovery
does not require coordination with other bricks.

As a result, the monitoring system that detects failures is
allowed to make mistakes, as long as they are not made too
often. In contrast, in other systems, false positives usually
reduce performance, lower throughput, or cause incorrect
behavior. Since false positives are not a problem in SSM,
generic methods such as statistical anomaly based failure
detection can be made quite aggressive, to avoid missing
real faults.

8. RELATED WORK
Palimpsest [38] describes a scheme for temporal storage

for planetary-scale services. Palimpsest requires a user to
erasure-code the relevant data, and write it to N replica
sites, which may all be under separate administrative con-
trol. Like SSM, all metadata for the write is stored on the
client. However, Palimpsest is intended for the wide area
network, and storage sites may be under different adminis-
trative domains. Palimpsest gives no guarantees to its users
in terms of storage lifetime; SSM gives probabilistic guar-
antees that data will be available within some fixed time
period.

Several projects have focused on the design and manage-
ment of persistent state stores [1, 19, 30, 2, 14, 21]. FAB [14]
shares many of the same motivations as SSM, including ease
of management and recovery; however, FAB is intended at
a very different level in the storage hierarchy. FAB is a
logical disk system for persistent storage that is intended
to replace enterprise-class disk arrays, while in SSM we fo-
cus on temporal storage of session state. In addition, in
SSM, all metadata is stored at the client, while FAB em-
ploys a majority-voting algorithm. Similarly, DStore [21]
shares many of the motivations as SSM, but it focuses on
unbounded-persistence storage for non-transactional, single-
key-index state.

Petal’s [26] storage nodes form a logical chain. Petal at-
tempts to make data highly available by placing data on a
particular node, and placing a backup copy on either the
predecessor or the successor node. Upon failure, the load is
divided by the predecessor and successor, whereas in SSM
the load redistribution is more even across all nodes. Fur-
thermore, the loss of any two adjacent nodes implies data
loss, while in SSM, the number of replicated is configurable.

SSM’s algorithm is different from that of quorums [16].
In quorum systems, writes must be propagated to W of the
nodes in a replica group, and reads must be successful on R
of the nodes, where R + W > N , the total number of nodes
in a replica group. A faulty node will often cause reads to be
slow, writes to be slow, or possibly both. Our solution ob-
viates the need for such a system, since the cookie contains
the references to up-to-date copies of the data; quorum sys-
tems are used to compare versions of the data to determine

which copy is the current copy.
SSM owes many of its motivations to DDS [19]. DDS

is similar to SSM in that it focuses on state accessible by
single-key lookups. A detailed discussion of the differences
between SSM and DDS can be found in previous work [27,
28].

We share many of the same motivations as Berkeley
DB [32], which stressed the importance of fast-restart and
treating failure as a normal operating condition, and rec-
ognized that the full generality of databases is sometimes
unneeded.

The windowing mechanism used by the stubs is motivated
by the TCP algorithm for congestion control [24]. The need
to include explicit support for admission control and over-
load management at service design time was demonstrated
in SEDA [43]; we appeal to this argument in our use of win-
dowing to discover the system’s steady-state capacity and
our use of “backpressure” to do admission control to pre-
vent driving the system over the saturation cliff.

Zwaenepoel et al [12] are also looking at using generic,
low-level statistical metrics to infer high-level application
behaviors. In their case, they are looking at CPU counters
such as number of instructions retired and number of cache
misses to make inferences about the macro-level behavior of
the running application.

9. FUTURE WORK
SSM currently does not tolerate catastrophic site failures,

but can be extended to do so. When selecting bricks for
writes, SSM can be extended to select Wlocal bricks from the
local network, and Wremote bricks from a remote site. SSM
can return from writes when WQlocal bricks have replied,
and 1 remote brick has replied.

Intelligently shedding load is an area of active research.
One policy is to allow only users that are already actively
using the system to continue using the system, and to turn
new sessions away; this can be done by only allowing writes
by users that have valid cookies when the system is over-
loaded. Alternatively, users can be binned into different
classes in some external fashion, and under overload, SSM
can be configured to service only selected classes.

We are exploring the use of rolling reboots as a method
of proactively avoiding failures.

Currently, Pinpoint monitors statisics that empirically
correlate with injected failures; however, we have no proof
that they are the most relevant ones. An avenue of future
research is to apply statistical learning theory to automat-
ically determine which measurable features best correlate
with failures.

10. CONCLUSIONS
A “new wave” of systems research is focusing on the

dual synergistic areas of reduced total-cost-of-ownership
and managed/hosted online services. Many groups have
proposed visions for self-managing, self-adapting, or self-
healing systems; we have presented an architecture and im-
plemented prototype that realizes at least some of those
behaviors in a state-storage subsystem for online services.



We have also attempted to illuminate one approach to self-
management in the context of this work: make recovery so
fast and inexpensive that false positives during failure de-
tection become less important, thereby allowing the use of
powerful, self-adapting, application-generic failure detection
techniques such as statistical-anomaly analysis. We hope
that our prototype will both prove useful as a building block
for future online services and encourage others working on
self-managing systems to explore similar recovery-friendly
designs.
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