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Abstract tent performance problem or other anomaly that can only

In operating today’s complex systems, the lack of a syd2€ addressed by a nontrivial configuration change. Under-
tematic way to capture and query the essential system st&f@nding and documenting the likely causes of such prob-
characterizing an incident of performance failure or unlems is difficult because they often emerge from the be-
availability makes it difficult for operators to distinghis havior of a collection of low-level metrics such as CPU
recurring problems from new ones, to leverage previou§ad, disk I/O rates, etc., and therefore simple “rules of
diagnostic efforts, or to establish whether problems sedRumb” focusing on a single metric are usually mislead-
at different installations of the same site are similar sr di ing [5].
tinct. We present a method for automatically extracting . )
from a running system an indexabsggnaturethat dis- Furthermore, today there is no systematic way to lever-
tills the essential system state associated with a probledge past diagnostic efforts when a problem arises, even
and can be subjected to clustering and similarity-based rf1ough such efforts may be expensive and are on the crit-
trieval to identify when an observed system state is sinical path of continued system operation. To that end we
ilar to a previously-observed state. This allows operatopould like to be able to recognize and retrieve similar
to identify and quantify the frequency of recurrent probProblem instances from the past. If the problem was pre-
lems, or to leverage problem observations at one site ¥{ously resolved, we can try to justify the diagnosis and
diagnosing problems at another site. We show that tHeerhaps even apply the repair actions. Even if the problem
naive approach to constructing these signatures is inefféi@mained unresolved, we could gather statistics regarding
tive, leading us to a more sophisticated approach based B} frequency or even periodicity of the recurrence of that
statistical modeling and inference. Our method requirddroblem, accumulating necessary information for priori-
only that the system’s metric of merit as well as a collectizing or escalating diagnosis and repair efforts. In order
tion of lower-level operational metrics be collected, as i§0 do these things, we must be able to extract from the sys-
done by existing Commercia| monitoring tOOIS. Even |ftem an|ndexab|edescr|Pt|0n that bOth dlStIllS the essen-
the traces have no annotations of prior diagnoses of oB@l System state associated with the problem and that can
served incidents (as is typical), our technique succdgsfulPe formally manipulated to facilitate automated clustgrin
clusters system states corresponding to similar problen@d similarity based search. Meeting these requirements
allowing diagnosticians to identify recurring problems oMvould enable matching an observed behavior against a
to name the “syndrome” of a group of problems later. Wéiatabasg of previously observed ones both for retrieval and
validate our approach on both synthetic traces and se¥etermining whether the problem is a recurrent one.
eral weeks of production traces from a customer-facing o
geoplexed 24 7 system: in the latter case, our approach OUr contributions are as follows:

identified a recurring problem that had required extensive1,

manual diagnosis, and also aided the operators in correct-
ing a previous misdiagnosis of a different problem.

“Those who cannot remember the past are
condemned to repeat it.” — George Santayana

1 Introduction

When complex software systems misbehave—whether
they suffer a partial failure, violate an established sarvi

level objective (SLO), or otherwise respond in an unex- 2.

pected way to workload—understanding the likely causes
of the problem can speed repair. While a variety of prob-
lems can be solved by simple mechanisms such as reboot-
ing [3], many cannot, including problems related to a mis-
allocation or shortage of resources that leads to a persis-

A formal representation signaturethat captures the
essential state of an enterprise system and is effec-
tive for clustering and similarity based retrieval using
known techniques from pattern recognition and infor-
mation retrieval [6]. We show that the construction
of an effective signature is nontrivial—the naive ap-
proach yields poor clustering and retrieval behaviors,
but good results are obtained with an approach based
on our prior successful use of statistical methods to
capture relationships between low-level system met-
rics and high-level behaviors [22, 5].

The use of this representation to cluster and identify
performance problems, and compute statistics about
the frequency of their occurrence. This in turn lets
an operator distinguish a recurrent condition from a
transient or first-time condition, and even annotate
the corresponding signature(s) with a repair proce-



dure or other explanation for future reference whethat problem instances reported as belonging to the same

the same problem recurs. group or cluster are indeed related. This is why our eval-
3. A demonstration of how the representation and clus#ation criteria are defined operationally, e.g., to say that

tering can be used across different sites to aid diaglustering is “meaningful” is to say that similar signatsire

nosis. do indeed identify problems with similar root-cause diag-
noses in practice.

Our experimental validation is conducted on a realis- Without loss of generality, when we refer to an “Internet
tic testbed with injected performance faults, and on pro-_ .~ % gen Iy, Whe
ervice” in the following discussion, we mean an external-

duction traces from several weeks of operation of a reée uest-driven, interactive application based on the-stan

customer-facing Web application in our organization. q o : Pp

The rest of the paper is organized as follows Secqa.r d three-_t Ier archﬂgctgre [7] .Of a stgteless Web SEIver,

tion 2 outlines our approach and methodolo aﬁd & tier containing application logic possibly running on top
. PP gy 9y and prose 2 middleware platform, and a persistence tier containing

vides some background on the statistical modeling tech-
. ) . ne or more databases.

nigue used. Section 3 describes both our controlle

testbed and the production traces used in our experiments.

Section 4 presents our results. Specifically, Section 44.1 Sketch of the Approach

compares three methods of signature construction. Sec- , . . ,
tion 4.2 illustrates the use of our method for identifyiné(/ile assume the system’s operational policy defines one or

recurrent problems in a real production environment. Segoorﬁ rﬁ fitceg?S)mae;gC;r(::ﬁg?o?;n rg;gﬁ n;etgg:’ nzi?_UESt
tion 4.3 shows that signatures can be leveraged acro youghput, etc. . :
sites. In Section 5 we review related work. We discus&c> (or a threshold over a collection of metrics). These

some caveats and ramifications in Section 6 and offer coﬁ%f% r&R/Ce%:ngtgjsv?/gdS;hetﬂ;risZ?Q(rjsigifi'gzmzeolﬁtlseI
cluding remarks in Section 7. ) y y Y

SLO if the metric(s) exceed the policy threshold, and in

compliancewith its SLO otherwise. The SLO may be

2 Problem Statement, Approach, and defined as an aggregate, for example, “at least 60% of

Methodology requests during a 5-_m|nute mteryal _have a response time
less tharT”.1 Our ultimate objective is to understand the

underlying causes of high-level system behavior and how

these causes manifest as SLO violation or compliance. We

1. Signature construction: What representation shoulgbncentrate on the questions stated above of identifying
we use to capture the essentials of the system staigcurrent performance issues, and the automatic retrieval
and enable clustering (grouping) and retrieval? of similar problems.

2. Discovery and exploration: How do we facilitate the \We begin by evaluating several candidates for represen-
identification of recurrent issues and the retrieval ofations of the essentials of the system state, which we call
similar problems? signatures We then evaluate the use of automated cluster-

3. Evaluation methodology: ing [6] for grouping SLO violations in terms of their signa-

(a) How can we determine that our signatures ari!'es, identify recurrent problems, and expose collestion
indeed capturing the system state, that is, th4tf metrics that together can becomeymdromeof a per-
the information contained in them effectively formance problem. We then evaluate information retrieval
serves as a “fingerprint” of a high-level sys-techniques for finding signatures based on similarity [20].
tem condition of interest such as a performancé Nis ability will enable an operator to search databases in-
anomaly? dexed with signatures and find past occurrences of similar
(b) How can we verify that clustering (based onProblems. This in turn will result in the operator leverag-

these signatures) is meaningful, that is, that sighd Past diagnostics and repair efforts.
natures that are similar according to some simi- !N our evaluation we will use data from traces collected

larity metric are fingerprints of problems whosefrom both a realistic testbed and workload, and from a pro-
diagnoses are similar? duction system that has suffered several SLO violations
(c) How can we evaluate the quality of retrieval,0ver & period of three months. In the case of the testbed
that is, how can we verify that a query to re-We run the system and .per|'0d|cally inject specific faults
trieve similar signatures is returning a high perdn order to trigger SLO violations. The testbed enables us
centage of actual matches with a low false postO annotate each SLO violation with its root cause, pro-
itive rate? viding ground truth for verifying the results of the auto-

S . ) ) . mated clustering and of similarity retrieval. For the real
The evaluation in particular has high practical impor-
tance: since our intent is to facilitate the exploration of 1N0teéhat evefjl Sbli_O'S gXpressed in_reg?s of pirlformance insde
; ; ; connected to availability, because availability problesften manifest
the past hlsto.ry Of. the.SySt.em FO identify recurrent prObearly as performance problems and because understandindiffierent
lems and similar situations in different systems, the US€L3rts of the system affect availability is a similar problenunderstand-
of our technology (system operators) must be confideltg how different parts of the system affect high-level pemiance.

We address three problems:




application, we have annotations for only a subset of thapplication metrics that correlate with each particular in
instances of SLO violations, and therefore it is only instance of the SLO state. We hypothesize that this attribu-
these instances that we will verify the use of informatioriion information is the key to constructing signatures that
retrieval techniques. We will define in Section 2.3 a noeorrectly characterize and distinguish different caudes o
tion calledpurity that will enable us to evaluate the useSLO violations. We therefore spend the rest of this sec-
clustering even in cases with partial annotations. tion reviewing the relevant aspects of that work and how it
Note that whether annotations are available or not, clugelates to signature construction.
tering enables us to group SLO violations in terms of sim- The metric attribution process goes as follows. The in-
ilar signatures, and discover different types of SLO violaput is a data log containing vectdvsof low-level system
tion instances, recurrent problems, etc. Similarly, el  and application metrics and the stat¢compliance or vi-
enables us to find and leverage past diagnoses and repaiiation) of the system. We divide time into regular epochs
For example, as we report in Sections 4.2 and 4.3 we fin@.g., five-minute intervals) and we have one such vector
that if the operators of the production system had had aéer each epoch. Each elememt of the M for an epoch
cess to our technology, a problem that was initially identicontains the value of the specific metric, an average over
fied as unique but later found to be a recurrence of a prithe epoch, and contains a discrete value depending on
problem could have been immediately identified as suclvhether the SLO was violated or not. Relying on pattern
Also, one incident that was initially classified as a recurelassification techniques and probabilistic modeling, the
ring problem exhibited a very dissimilar signature (usingalgorithms in [22, 5] yield as output an ensemble of prob-
our method) than the alleged original problem; manual reabilistic models characterizing the behavior of the metric
diagnosis showed that our method was correct, and indeddring intervals of both compliance and violation.
the second problem wasot a repeated manifestation of Each one of these models essentially represents the re-
the first problem. lationship between the metrics and the SLO state as a
joint probability distribution. We use the Tree-Augmented

] ) Naive Bayes models (TAN) to represent the joint proba-

2.2 Signatures: Capturing System State bility distribution. Out of this distribution we can extriza

characterization of each metric and its contribution to the

The first issue we address is that of a representation thgf o state. Let the term®(m|my,,s~) represent the re-
Wy : i

captures those aspects of system state that serve as a “lifixing probabilistic model for metrioy under violations

gerprint” of a particular system condition. Our goal is to(sf)’ and letP(m|m,, ,s"), represent a probabilistic model

capture the essential system state that contributes to S'-er the same metric under an SLO state of compliarice
violation or compliance, and to do so using a represent%-sing these models we can identify for a given instance of

:'r?.n t?att p'row:je? |r}format|on'usefuflt|hn. trdtaatgnos]tshoﬂ M, which metrics (because of their values) are more likely
is state, in clustering (grouping) of this state (with sim 0 come from their characteristic distribution during vio-

ilar states), and in the retrieval process. We will call suc tion. This process is callewetric attribution Formally,

a representation agnatureof the system state. We make for a given instance, a metric is flagged as “attributable”
the following assumptions: if:

1. We assume that we can continuously measure logP(m|my,,s”) > logP(m|myg,s"), (1)
whether the system is in violation or compliance at
any given time with respect to the SLO. This can béhat is,m’s value is closer to its characteristic value for the
done, for example, by examining server logs containiolation” distribution than to its characteristic valder
ing timing information or by running probes. the “compliance” distribution. The interpretation is that
2. We assume that we can continuously measure a ctéhe observed value afy is more likely to come from the
lection of metrics that characterize the “low level” distribution where the SLO stais that of violation. In
operation of the system, such as CPU utilizationaddition, the methods in [5, 22] are able to identify metrics
gueue lengths, 1/0O latencies, etc. This informatiorthat yield no information on the SLO state. We call such
can come from OS facilities, from commercial operametricsirrelevant
tions tools such as HP OpenView, from instrumented The process of constructing signatures is as follows.
middleware (as was done in [4]), from server logsGiven a system trace, we follow the procedure detailed
etc. in [22] to continuously learn an ensemble of models; for
Since we can by assumption collect low-level systen‘?very epoch, a relevant (to the pa(ticular SLO_ state) sub-
metrics, it would seem reasonable as a starting point tsoet of models from the ensemble is selected; from those

. : . We extract a list of metrics wh val re “abnormal”
simply use these raw values as the signature. As will b? a list of metrics whose values are "abnorma

seen i Secion ., our experiments allo us o conck <8, 1) e, e vales e dentied asbeng
that signatures based on using raw values are not as &1° gp

fective as an approach that builds on our prior work orm— o . .

. . . The termmy, represents a metric directly correlated with mefric
metric attribution [22, 5] In that work we automatically iy the Bayesian network representation. Interested reagtesuld con-
build models that identify the set of low-level system andult [5].




violation (resp. compliance) We then extract the signa- as defined above. We will report only on the results com-
tures, by yielding a transformed data log containing a sémg from theL; norm. Although the results for the norm
of vectorsSwhere: were quantitatively different, they were qualitativelynsi
ilar and offered no new insight as far as making decisions
e entrys = 1 if that metric is selected by the relevantapout the signature representation. In addition the center
models whose value is determined to be abnormadf the clusters in the k-medians case are represented by

We say the metric iattributed actual signatures that are members of the cldster.

e entrys = —1 if the metric is selected by relevant |deally, we would like each cluster to contain signatures
models but isnot found to be “abnormal”. We say pelonging to a single class of performance problems (SLO
that the metric isiot attributed violations), or else signatures belonging only to peridds o

e entrys = 0 if the metric is not selected by any of the S| O compliance. We introduce a score determining the
models at all—we say that the metriciigelevantto  purity of a clustering to formalize this intuition. In the
the SLO state. case where we have no annotations, we distinguish sig-

Each &is th . for th h N natures only in terms of their corresponding SLO state
ach vectorsis then asignaturefor that epoch. Note compliance or violation). We count the number of sig-
that we produce a signature for every epoch includin

. : - . atures in each cluster that describe epochs of compliance
those in which the SLO was not violated. The intended,y e numper that describe epochs of violations. These

semantics of a signature are as follows. A metric receivqﬁ)unts are then normalized by the total number of sig-

g.valltée (.)f 1 iffits rlaw value is_ mo(;e Ii_k;]alélt_%co_mle from .thenatures (the sum of the two), to produce probability es-
istribution of values associated wit| violation ("e'timatespc and py (Pe+ pv = 1). This are used in turn

Inequality 1 is true). These semantics holds for both Perty score “ourity” of each cluster. A cluster is pure if it

odts tor: V|0Ia_t|on tand compllarfmleb f‘hsfw'” rk])ecortne_ agtparbontains signatures of only compliance or only violation
ent, these signatures are usetul botn for characteriz 'on.epochs, i.e., if eithep; or py are 1. With these prob-

thel behavior O(]; the system in compliance periods, and ify,;jities, we compute the entropy of each cluster, given
violation periods. as: H = —pcloga(pe) — pvlogz(py). For a pure cluster,
Thus, given system traces collected on an Internet s&&hiropy is 0, which is the best result. The entropy is 1

vice, our approach generates a database consisting of ()fen the cluster is evenly split between the two types of
signatures describing the system state, coupled with t'%‘?gnatures B = pv = 0.5). It is straightforward to gen-

SLO state. eralize the definition of purity score when there are labels
distinguishing different annotations corresponding t®©SL

. . violations.

2.3 Clustering of Signatures We compute the overall average entropy of the all of the

The objective when applying clustering to a database 61Justers weighted.by the normalizgd cluster size to give us
signatures is to find the natural groupings or clusterd Measure of purity of the' chstgnng regult. Averagg en-
of these signatures that characterize the different perfoturOpy closetoOisa strong indication Fhf?“ indeed the signa-
mance problems and normal operation regimes. The ogtires .captl.Jred meaningful qharacter|st|c§ of t_he peribds o
put of the clustering is a set of clusters, plus a chara(‘.’-'()l"j‘t.Ions In contrast to periods of non-wolauon. Indeed
terization of the cluster center. By inspecting the actu e will use .the purity score to comparedlﬁerentproposals
elements of the signature database in each cluster we Qﬁ generating signatures (se(_a F[gures 2’. anq 3).

identify different regions of normality as well as recurtren n order to include the purity mfprmatlon n the clus-
problems. In addition, the centroid of a cluster of problerrlierlng process, we added an lterative I'oop using the stan-
behaviors can be used asyamdromédor the problem, since qlard k-medlans.(k-m.eans) as a building bigckn the

it highlights the metrics that are in a sense charactenstic 'St Step k-medians is applied to the whole database

a set of manifestations of the same problem. of sign.atures., yielding clusters as its output. The purity
ionapCore is appl_led to each one of these clusters. If the score
we need to specify distance metriand a clustering al- 1S abovg an mput_threshot@, t_hen the procedure Stops.
gorithm that minimizes the distortion (sum of distance Otherwise, k-medians is appl_|ed once more to the signa-
. . ?glres for those clusters that didn’t pass the test. There are
of each signature to its nearest Cluster center). I_n thlwo parameters used to control these process: a nuknber
paper we explored both they and L norms as dis- ) uen is the maximum of clusters expected in each appli-
tance metricsl{p = {/3i[X; —%,|P). As our basic clus- cation ofk-medians, and the totly of clusters expected.
tering algorithm we will use the standard iterative algoThe process stops whégy is reached. There are a num-
rithms [6]: k-medians for thé.; norm, and k-means for ber of procedures for determining these parameters, in-
theL, norm. These algorithms find k cluster centers (me=
dians and mean respectively) that minimize the distortioga

4A complete analysis of these norms is well beyond the scopigisf

per and will be explored in future work.

5In the rest of the description we will only mention k-mediamish
3Mechanism for fusing the information from different modate de-  the understanding that when the norm is used the actual algorithm is

scribed in detail in [22]. k-means.




cluding score metrics with regularization components and Following the common practice in the information re-

search procedures which increase their value gradually utnieval community, we increasd and measure the pre-

til no significant improvement in the clustering distortioncision/recall pair, until we achieve a recall of 1.0. We

is achieved [6]. In this paper we explore the spackgf then plot precision as a function of recall, to produce the

and setk = 5. These values where appropriate for evalPrecision-Recall curve (see Figure 4 for an example). A

uating the power of the signature extraction process armerfect precision/recall curve has precision of 1.0 for all

displaying its properties. We also checked the amount byalues of recall. As in the case of clustering, we will use

which our algorithm will affect the minimization in dis- precision and recall to evaluate the different proposals fo

tortion with regards to a straightforward application af th a signature (see Section 4.1.2).

k-medians algorithm and found it to be negligible.

When we compare different candidate methods of sig-

nature construction in section 4.1, we will use the purity o8 Trace Collection and Characterization

the clustering process as providing evidence of the infor-

mation contained in each approach. Signatures that enal@der empirical results are based on large and detailed traces

clusterings with a higher degree of purity (lower entropygollected from two distributed applications, one serving

will be favored as they clearly contain enough informatiorsynthetic workloads in a controlled laboratory environ-

to enable the automated grouping of the different SLO ranent and the other serving real customers in a globally-

lated states (see Section 4.1.1). distributed production environment. These two traces al-

low us to validate our methods in complementary ways.

. ) The testbed trace is annotated with known root causes of

2.4 Retrieval of Signatures performance problems. Annotated data allows us to eval-

Using information retrieval techniques we can retrievéJate our signature-based diagnostic methods in terms of

: - w1 .simple information-retrieval performance measures (e.g.
from a database all previous instances that are “similar” to P P (e.g

a specific signaturé This capability enables us to lever- precision, recall). The production trace is not annotated a

age past diagnosis and repairs and in general all inform\év-e" or as thoroughly as the testbed trace. By treating it as

tion about previous instances displaying similar chawacteg\?el;glgfgﬁﬁed;tanz(f;’r;v;S;grlij:e I\;[v?icivi?]htjt?rtr? t?gg(iagf:c—
istics (as captured in the signature vector). 9 9, P

h ; . ._identification of the “syndromes” ribin rforman
As in the case of clustering, similarity is formalized in dentification of the "syndromes” describing performance

the context of a distance metric. and as in that case vgroblems. Since we do have annotations to some of the
X ! I, anc : X ?gnatures in the production trace, we can further validate
explored both.; andL; norms, displaying only the results

the accuracy of our retrieval on real-world data.
for theL1 norm.

Our evaluation will follow the standard measures from. our traces record two kinds of data about each applica-
the machine learning and information retrieval commmlon: 'apphcatlon-level performance data foriqur models’
nity [20]. The evaluation focusses on the quality of theS.LO indicator, ar!cj sy_stem-level resource utilization met-
retrieval .with respect to the similarity and the quality of 1¢3 e.g., .CPU ut|I|zat|on)._ Our.tools measure the latter a

i i o2 ; ~ ~averages in non-overlapping windows.
the signatures. If a specific annotatidis associated with
a (set of) signature(§we expect that when similar signa-
tures are used, the retrieval process yields signatures a§_1 Testbed Traces
associated with annotatigh Therefore, in evaluating our
retrieval results, we consider only those signatures &ssoQur controlled experiments use the popular PetStore e-
ated with annotations (see Sections 3.1 and 3.3). commerce sample application, which implements an elec-

Formally the process of retrieval proceeds as followsronic storefront with browsing, shopping cart and check-
given a signature, return thid closest signatures to it out. Each tier (Web, J2EE, database) runs on a sep-
from the existing signature database. Given known ararate HP NetServer LPr server (500 MHz Pentium II,
notations both to the query signature and the signatures®12 MB RAM, 9 GB disk, 100 Mbps network cards,
the database, we compute the two standard measuresvihdows 2000 Server SP4) connected by a switched
retrieval quality: Precision and Recall. 100 Mbps full-duplex network. Apache’s extended

For a given query, precision measures what fraction diTTPD log format provides us with per-transaction re-
theN returned items have the matching annotation (1.0 isponse times and we obtain system-level metrics from HP
perfect); recall measures the percentage of signatures@penView Operations Agent running on each host. A
the database with the same annotation as the query tligtailed description of our testbed’s hardware, software,
are actually retrieved. Note that the maximal value of 1.@etworking, and workload generation is available in [22].
is achieved only whehl is at least equal to the number of We collect 62 individual metrics at 15-second intervals
signatures with the same annotation as the query signatuagd aggregated to one-minute windows containing their
As N increases recall goes up but precision typically goesieans and variances. We pre-process our raw measure-
down, as it becomes harder to retrieve only signatures thatents from the Apache logs to average transaction re-
have a matching annotation. sponse times over the same windows and then join all data



from the same application into a single trace for subse- # # #  RAM

guent analysis. Region Role hosts CPUs disks (GB)
We use the standard load generdiot per f [11] to Amer  App Srvr 16 16 64

generate workloads in which simulated clients enter the Amer DB srvr 12 18 32

site, browse merchandise, add items to a shopping cart,

and checkout, with tunable probabilities governing the EMEA — App stvr 16 10 32

NN M bdN

transition from “browse item” to “add item to cart” (prob- EMEA DB srvr 6 ? 16
ability P,) and from “add item to cart” to “checkout cart” Asia App srvr 12 63/22 20
(probabilityP;). We measure the average response time of Asia DB srvr 6 8 16

client requests in each 1 minute window and require that

the average response time stay below 100 msec to maifple 1: Key hardware and software components in FT.
tain SLO compliance. We created three handcrafted fauthe two app server hosts in Asia have different numbers
loads designed to cause SLO violations. In the first, wg disks. All app servers ran WebLogic and all DB servers

alternate one-hour periods B = Pc = 0.7 with one-hour - ran Oracle 9i. Most of the DB servers had 550 MHz CPUS.
periods ofP, = P, = 1.0 (a “BuySpree”). In the second,

we execute a parasitic program on the database server ma- transactions/min % SLO
chine that consumes about 30% of the available CPU durServer Dates mean 95% max viol
ing alternating one hour intervals, but no other major re- AM1  12/14-1/14 208.6 456.4 1,387.2 236
sources (“DBCPU contention”). The third faultioad does an2  12/13-2/08 207.9 458.0 977.4 225
the same thing but on the application server rather than the
database server (“APPCPU contention”). P1 12/17-1/05 39.9 1182  458.4 26.2
Note that these faultloads simulate both faults due to P2 1217-1/30 521 172.8 775.0 13.1
internal problems (CPU contention) and faults resulting
from changes in workload (extreme buying plateaus durfable 2: Summary of FT application traces. The last col-
ing BuySpree). In both cases, the injected faults correé#mn is the percentage of transactions which violated their
spond taannotationof known root causes of performanceSLO in the data. Trace collection began in late 2004 and
problems in the final processed trace that we employ in o@nded in early 2005. “AM” and "AP” servers were located
analyses and evaluations. in the Americas and Asia, respectively.

3.2 Production System Traces terion for SLO violation is whether more than 40% of the
transactions in a 5-minute window violated their transac-
Our second trace is based on measurements collectediatt SLO.
several key points in a globally-distributed application FT is well suited to our interests because its require-
that we call “FT” for confidentiality reasons. FT servesments include high performance as well as high availabil-
business-critical customers on six continents 24 hours piy. Furthermore performance debugging in FT is partic-
day, 365 days per year. Its system architecture therefondarly challenging for two reasons. First, different orga-
incorporates redundancy and failover features both lpcalhizations are responsible for FT itself and for the appli-
and globally, as shown in Figure 1. Table 1 summaeation server infrastructure in which crucial FT compo-
rizes key hardware and software components in FT, antents run (the latter is delimited with a shaded dashed
the transaction volumes recorded by our traces (Table 8yal in Figure 1); opportunities for inter-organizational
demonstrate the non-trivial workloads of the FT instalfinger-pointing abound when end-to-end performance is
lations. All hosts at the application server and databagmmor. Second, FT's supporting infrastructure is physi-
server tiers are HP 9000/800 servers running the HRally partitioned into three regions with separate opera-
UX B.11.11 operating system, except that one databasienal staffs. A performance problem that occurs in the
server in Asia is an HP rp7410 server. afternoon in each region, for example, will occur three dif-
HP OpenView Performance Agent (OVPA) providederent times, will appear to be specific to a single region
system utilization metrics for application server andeach time it occurs, and will demand the attention of three
database hosts. FT is instrumented at the application levadparate teams of system operators. Cost-effective per-
with ARM [18], providing transaction response times.formance debugging in FT requires that commonalities be
OVPA and ARM data are aggregated into 5-minute winfecognized across regions, across time, and across orga-
dows in the processed traces we analyze. We have tragegational boundaries, and that different teams of human
from the Americas and Asia/Pacific hubs but not from Eudiagnosticians leverage one another’s efforts.
rope. Table 2 summarizes our FT traces. Another attractive feature of our FT traces is that some
The service-level agreement associated with FT def our 5-minute samples are annotated, in the sense that
fines different response time SLOs for different transadhey correspond to times when we know that a specific
tion types. Compliance is measured on every transactigrerformance problem occurred whose root cause was sub-
and counts are aggregated in 5-minute buckets. Our cgequently diagnosed. In the next section we describe this
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Figure 1: Architecture of the “FT” production system. FT iglabally-distributed multi-tiered application with regial

hubs in the Americas, Europe/Middle East/Africa, and ABidferent organizations are responsible for the FT applica
tion and the application server on which it runs; the lattendicated by a shaded dashed oval in the figure. FT has a
globally-distributed main database and an additionalleunyidatabases, managed by a third organization, showrein t
lower right.

problem, which illustrates both the challenges that we faamore than 600 seconds to acquire a connection, and were

and the opportunities that our approach attempts to eraerefore flagged as “stuck threads” by WebLogic. The

ploit. problem was solved by increasing the connection pool size
by 25%. We use the annotation IDC (Insufficient Database

3.3 A Diagnosed Problem: Insufficient Connections)toreferto this problem.

Database Connections (IDC)

The FT production system experienced a recurrent per-

formance problem mainly in the Americas domain dur-

ing December 2004 and January 2005. During episodes

of this problem, business-critical customers experiencedl Results

latencies of several minutes on transactions that normally

complete within seconds. The operators who first detected

the problem described it as “stuck threads” in the applicaFo substantiate our claims, we perform analysis on the

tion server because WebLogic issued messages in a logfilata collected from both the experimental testbed ex-

each time it diagnosed a stuck thread. There can be maciyed with synthetic workloads and from the globally-

causes for threads to become stuck, therefore it is necefistributed production environment described in Section 3

sary to look for other symptoms to diagnose the cause. We will use ETB (for Experimental TestBed) to identify
Due to the severity of the problem, a joint task forceraces in the first case and RWA (Real World Application)

comprising both FT application developers and applicaor the second case. For the ETB experiments, we in-

tion server administrators quickly formed to address itentionally injected known faults into the system to cause

This team eventually diagnosed and repaired the roperformance problems. The ETB trace is therefore reli-

cause of the performance problem, thus providing arably annotatedwith the appropriate fault per epoch. In

notations for data points in our traces corresponding tthe RWA we have only partial annotations, related to one

episodes. Our account of the problem is based on detaildéthgnosed problem, as described in Section 3.3. These

bug-tracking database entries and e-mail corresponderamenotations as well as the fact that we have an objective

among the troubleshooters. measure of performance as reflected by the SLO state of
After several weeks of debugging, the problem wasompliance and violation will provide ground truth against

traced to a too-small pool of database connections. Umvhich we can compare the results of the clustering and re-

der heavy load, application threads sometimes had to waiteval operations.



Metric Raw | Attr. | Raw Value We also remark that in our experiments we see that
Name Value & Attr some metrics are consistently deemed irrelevant for all
transaction count 398.00) O 0 time epochs in the traces (e.g., in the RWA data the
gg: app C';).u util 91437 (1) 97647 root CPU, memory and disk utilization on the application
gn app aive proc server were never found to be relevant by any model, get-
gbl app active proc 357 0 0 .

gbl app run queue 1057 1 1057 ting a yalue of O for all epoc.hs). In some cases suph an pb—
gbl app net in packet rate 817 1 817 servation can lead to reducing th.e amount of metrics belng
gbl mem util 5462 | 1 54.62 collected, although that loss of information can be detri-
gbl mem user util 26.32 1 26.32 mental in cases where a dropped metric becomes relevant
DB1 CPU util 2596 | -1 -25.96 in future performance problems. In addition, because our

Table 3: Examples of the different signature proposal@Ode”ng process rapidly narrows dowr! to a small number
showing a subset of the metrics collected in the productio?fc metrics that are highly correlat.ed \.N'th th.e' SLO state,
unless the expense of data collection is significant, we dis-

environment. The first column is of raw values (not nor- Urage removing anv metrics from the measurement a
malized to preserve the context of these metrics), secoffdurad g any P

is metric attribution (with possible values{r-1,0, —1}), paratus.
and third is the AND of raw values and metric attribution.
4.1.1 Signatures and Clustering

4.1 Claim 1: Evaluating Proposals for Sig- we perform a clustering of the signatures as described in
natures Section 2.3. To evaluate the quality of the clusters, we rely

W | d h ol h n the notion of purity also described in the same section.
e evaluate and compare three possible approaches [kiyqopy is used as a measure of purity with low entropy

creating signatures. L& denote the vector representingjmplying that the clusters contain only one type of anno-
the signature. In all cases the elemesit& this vector tateq value (and hence are of a better quality). In the case
correspond to a specific system, application, or workloagk the ETB we have four annotations: one refers to peri-
metric. ods of SLO compliance and the other three are given by
1. Raw values: in this case we represent a Signgﬁgurethe cause related to the injected problem. For the RWA,
using the raw values of the metrics. In other worddve use SLO compliance and violation to check purity. In
S= M. Following common practice in data ana|y_bot'h cases we vary the number of clusters and check the
sis [6], we normalize these values[f1] to prevent variation in the weighted average entropy over the c_Ius-
scaling issues from influencing similarity metrics anders. Stable entropy across different cluster numbers is an

clustering® This signature is the most naive and redndication of the robustness of the clustering output. Fig-
quires no extra processing of the traces. ures 2 and 3 show the resultant entropy for each signature

2. Metric attribution: If the attribution as described ingeneration method and number of clusters. Note that in
Section 2.2 flags the metrig to be attributable, then both cases, ETB and RWA, the clustering using attribution
s = 1, otherwises = —1. If the metricmy is not even information clearly yields purer clusters than the cluster
considered by the models for the attribution proces#?d Using only the raw value of the metrics.
then the metric is considered to be irrelevant to the Table 4 provides the counts of each annotation with 9
SLO state and; = 0. This requires significant com- clusters using signatures based on metric attribution on
putation [5], but we showed in [22] that the compu-ON€ of the Americas production systems. Presenting the
tations could be done on millisecond timescales, af@W counts in a cluster provides the application adminis-
lowing this approach to be used in real time. trator a sense of the intensity of the pure clusters, giving

3. Metric attribution and raw values: This is similar toNner the capability to focus attention on the more prominent
the previous approach except that the raw value of tr@usters of performance problem instances. It is worth not-

metric is multiplied by its entrg as explained in the INg that one of the clusters (cluster 3) contained most of
previous itent. the instances of the IDC problem (75%), which is signif-

) . icant since the clustering algorithm did not have knowl-

We evaluate signature-generation approaches based @iye of the IDC annotation of these instances, but only
the quality of clustering and retrieval operations. Wenew that these were violation instances. Cluster 9 and
demonstrate that signatures based on metric attribut®n afg jndicate that for about 10% of the data the signatures

superior for our purposes. This strongly implies that mefyere not able to separate between periods of violation and
ric attribution captures information about system sta& th compliance.

goes beyond the raw values of the collected metrics, fur-

ther validating the results in [22, 5]. 412 Signatures and Retrieval

5 - . .
The results with unnormalized values were much worse fosidpe : . :
natures relying on the raw values. Figure 4 shows precision/recall curves of retrieval exer-

"The intuition is that the information contained in the vabfethe ~ CISES performeq on the ETB traces '_JSing the three ap-
metric is added to the information in the attribution praces proaches described above for the signatures (see Sec-



Cluster #| #vio | #compl| Entropy
1 552 27 0.27 0.8‘: —e— Raw valués
2 225 0 0.00 0.7 —%— Raw values metric attribution|
3 265 2 0.06 —v— Metric attribution
4 0 1304 0.00
5 1 1557 0.00
6 0 1555 0.00
7 0 1302 0.00
8 216 274 0.99
9 100 128 0.99
Table 4: Example of a clustering instance using signature
based on metric attribution. The first column is a coun 0.y~ v v v
of number of violation instances, the second shows tfF 0 ‘ ‘ ‘ ‘
number of compliance instances, and the third shows tt 5 6 7 8 9 10

cluster entropy based on the purity of the cluster. Cluster o

contains almost all the instances corresponding to the IDEgure 2: Clustering on the annotated data from ETB. The
problem; 201 instances of the 265 violation instances igignature method relying on attribution performs best and
cluster 3 are annotated as the IDC problem, the remaindgrmore stable across different number of clusters. X axis
68 IDC annotated instances are distributed between clusi@snotes the number of clusters.

1land?2.

) o o sues and to gather statistics regarding their frequency and
tion 2.4 for the definition of these curves). Precision/tecaperiodicity.

performance is better in direct proportion to the area under First, based on the results of the Subsection 4.1 we can

its curve. Clearly the use of attribution provides an infor- ssert that the clustering as applied to the data in the RWA
matio_nal advantage, as the curves using attribution are f?rrobust. As Figure 3 indicates, the entropy of the clusters
superior. _ _does not change significantly as we increase the number of
Our real-world traces were collected during a periog|ysters, implying that the existing clusters are being sub
whena misconfiguration was causing a performance ProBivided rather than completely new ones created. Recall
lem (the “IDC” problem discussed in Section 3). Overnat the entropy is an indication of the “purity” of the clus-

all, 269 epochs were annotated with this problem. Figer namely of the elements in the cluster what percentage
ure 5 shows the location of these epochs over the mO”Hélong to the same annotation.

long trace, overlayed on the value of the reference metric

(transactions average response time). It can be seen t X
the issue occurred intermittently over that period. Eﬂ for the case of nlne_clusters. Table 4 S.hOWS the num-
) . . ber of elements belonging to each annotation (compliance
Figure 6 shows the precision-recall graphs for retrievs, yigiation) in each cluster. Note that for most of the
ing signatures of the IDC problem. The graph shows th$1usters;, comprising of 90% of the 5 minute epochs in a
high precision is achieved for a relatively large range ofy5ce collected over a month, the vast majority of elements
the recall value. For example, of the top 100 signatur&g each cluster correspond to one annotation. In addition
retrieved, 92 are correctly retrieved, leading to a preaisi a6 clysters are different from one another. Figure 7 de-
of 92% (and recall of 34.2%). Such a precision would bgjqts the cluster centroids (with a subset of the metrics)
more than sufficient for an operator to safely infer that the,, tour of the cluster from Table 4: cluster 4 and 7. that
label attached to the majority of signatures being retdeve.,ntained only compliance signatures and cluster 1 and 3,
matches the problem described by the query signature. A, contained mostly violation signatures. Note that the
in the case of clustering, these results confirm that the g8 pliance centroids deem most metrics as not attributed
of attribution in the generation of signatures provides thg;ih 5 violation state (values -1 for metrics), while the vi-
required information. olation centroids deemed some of the metrics as attributed
with a violation state (value 1), and others as either ir-
relevant (value 0) or non-attributed. We also see the dif-
4.2 Claim 2: Identifying Recurrent Prob- ference between the centroids of the “violation” clusters
lems (1 and 3) with respect to the metrics that are deemed at-
tributed. Cluster 1 deemed the Database tier CPU utiliza-
We show that the clustering is meaningful: each clustdfon (DB1 cpubusy) as attributed but assigned a -1 value
groups signatures that would have the same annotatiofts the application server CPU utilization (gbl cpu total
if they were provided and the centroids can be used asil). In contrast, the centroid of cluster 3 deemed the ap-
the syndrome that characterizes that group of signhaturgdication server CPU as attributed, together with the num-
Therefore clustering can be used to identify recurrent ider of alive processes and active processes on the applica-

tSecond, we demonstrate that the clustering is meaning-
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tion server. As discussed earlier, most members of clustEfgure 5: Temporal location of the instances of the IDC
3 were labeled as the IDC prob|em, which had the Syml:prOblem on one of the Americas maCh|neS, overlaid on
tom of high application server CPU utilization and highthe reference metric.

number of alive and active processes. These differences

point out to the symptoms of the members in each clustegrver utilization metrics were not attributed, and were in

and define the syndrome of a group of signatures. fact normal. This problem remains undiagnosed to this
Given this clustering, identifying recurrent problem isdate, and did not appear again in the following months,

achieved by looking at the time of occurrence of the signarowever, if it appears again, these past instances would be

tures in each cluster. Figure 8 depicts the instances of clugtrieved and perhaps help prioritize finding a solution or

ter 1, 2 and 3 overlaid in time on the performance indicatathe root cause of the problem.

graph. Cluster 3 is recurrent, and as mentioned earlier, we

verified with the IT operators that the periods defined by

“Cluster 3" coincided with the manifestation of the IDC4.3 Claim 3: Leveraging Signatures Across

problem according to their records. Thus, had they had Sites

this tool, they could have easily identified that problem as

a recurring one since it presented the same symptoms laghis section we provide evidence that the signatures col-

provided by the signatures. In addition, the clustering didected at various sites and systems can be leveraged dur-

covered another undiagnosed recurring problem (Clustarg the diagnosis of performance problems. In particu-

1), with the symptom of higher Database CPU utilizatiorlar, we show that diagnosis of a performance problem can

(average of approx. 60% compared to approx. 20% ibe aided by querying for similar (or dissimilar) signatures

most other times), while at the same time all applicatiogollected at different sites or machines.
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tures of the IDC issue in the web-service production envi
ronment. Methods based on metric attribution outperforr
the one re|ying on raw values Significanﬂy_ Figure 7: Comparison of the centroid values for four clus-
ters (clusters 1, 3, 4 and 7 from Table 4), two containing
mostly compliance signatures (clusters 4 and 7) and two
In the process of diagnosing the IDC problem, whictgontaining mostly violation signatures (clusters 1 and 3).
was observed on the Americas site, the debugging team igtuster 3 contained mostly signatures of the IDC prob-
vestigated whether the same problem occurred in the Asiem. Note the difference between cluster 1 and cluster 3

Pacific region as well. In particular, they hypothesizedh terms of metrics that are attributed and those not at-
that it did occur during a failover period on December 18tributed.
2004, in which the transactions from the Americas cluster

were being sent to the systems hosting the FT in Asiq- o . : ; .
o . : ion. This diagnosis was accepted by the diagnostics team;
Pacific(AP). A high percentage of the transactions werg, repair consists of priming the database and middle-

violating their SLOs on one of the AP cluster machme@vare caches for the new transaction type before a planned

during t.he first 100 minutes' of the failover period. Thefailover. As a result of this experience, we were able to
debugging team suspected it was the same IDC proble lace the false annotation originally provided for that

and annotated it as such. Our signature database includg e data with a new and correct annotation explaining

signatures on traces collected on that day. We then P&he problem and describing the required repair.
formed the following query: are the signatures annotated

as the IDC problem in the Americas region similar to the
signatures collected from the AP region? In particular, ar§ Related Work
those signatures collected during the failover similahto t

IDC signatures? The use of search and retrieval to find similar instances
As Figure 9 shows, the result of the query was that thend experiences of faults and performance problems is not
signatures of the AP failover period are very different fromhew. It is common practice for system operators to use
the signatures of the IDC problem. Key metrics that wergveb search engines to search for the text of error mes-
highly attributed in one were not attributed in the other. Okages or console messages as part of their debugging, but
the metrics that were attributed in both, only transactiosuch methods are ad-hoc and imprecise. The work in [15]
volume (ttcount) was similar in its attribution signal for argues for a machine-readable compact representation of
the signatures from the two sites. system state in an attempt, among other things, to formal-
Upon close inspection of the attributed metrics from onéze the recording of instances and that search. Yet to the
of the AP machines and the transaction mix on that maest of our knowledge our work is the first to propose a
chine, we quickly arrived at a different diagnostic concluconcrete technique for constructing the appropriate repre
sion for the AP problem. Due to failover from the Amer-sentation and evaluating its efficacy.
icas system, AP1 was not only experiencing higher trans- While others have attempted to use low-level metrics to
action volumes (see Figure 10), but also seeing a type oharacterize high-level system behavior, we believe that
transaction (call it the XYZ transaction) that it normallywe are the first to propose an automatic method for gener-
does not see. The SQL statements associated with thegang a compact, indexable representation of system state
unusual transactions were not prepared or cached on ttat facilitates syndrome identification and incident elus
AP machines, leading to more database overhead (Fitgring. This section surveys recent research on related
ure 12, higher response times, and ultimately SLO violecomputer performance diagnosis problems and reviews
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Figure 8: Instances of the three "pure
(cluster 1, 2 and 3 from Table 4), overlayed on the refe
ence metric . Cluster 3 comprises mostly of the instanc
annotated as the IDC problem. Cluster 1 is another r
current problem with the symptom of high Database CP
load and low Application server utilization, while Cluster
2 has memory and disk utilization metrics on the Applica-

tion server as attributed metrics to the performance prob- o, research differs from these projects in that it is

lem. aimed at aiding root cause diagnosis by finding similar
problems, rather than bottleneck detection or workload
applications of signatures to diagnostic problems in othenodelling. While our approach does not determine the
domains. root cause, finding a previously solved (annotated) prob-
Aguilera et al. describe two algorithms for isolating lem may provide root cause (or repair action) when the
performance bottlenecks in distributed systems of opaquigtrieval is accurate. Like Aguilert al. and unlike Mag-
software components [1]. Their “convolution” algorithm Pie, we assume little knowledge of application structure or
employs statistical signal-processing techniques tor inféogic and we rely heavily on statistical methods. Like Co-
causal message paths that transactions follow among Cohﬁnet al.we find that pattern-ClaSSiﬁCation tEChniques are
ponents, which are not assumed to communicate VHﬁer' for |dent|fy|ng a small subset of system measure-
RPC-like request/reply pairs. At the opposite extrem&ents that are relevant to performance. To us, however,
of this know|edge-|ean approach, Magp|e CharacterizéBiS subset is useful not for its own sake but rather for con-
transaction resource footprints in fine detail but requireStructing signatures. For brevity, in this section we do not
that application logic be meticulously encoded in “evenfliscuss prior work already summarized in the above pa-
schema” [2]. Coheet al. employ statistical pattern clas- Pers’ excellent literature reviews.
sification techniques to identify system utilization mesri Faults in distributed systems, as opposed to perfor-
that correlate with performance [5]. mance problems, are the subject of a large literature.
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For communications networks, whose components have Modern systems software, middleware, and styles of
highly constrained and well specified behavior, a widepplication architecture bring obvious benefits but entail
range of fault localization techniques have been ex-substantial costs. Ours is one of several research attempts
plored [16]. Yeminiet al. describe arevent correlation to preserve the benefits of modern architectural styles
(root cause determination) procedure that relies on an ewhile mitigating their problems. We briefly survey three
tensive library describing each system component’s posstch problems and corresponding research toward solu-
ble faults and the consequences of each fault [21]. Thesens.
detailed component descriptions are compiled intode-  Layers of modular re-usable components interacting
bookthat reduces root cause analysis to a simple and efthrough narrow interfaces allow us to divide and conquer
cient task of decoding observed symptoms into the fauligcreasingly complex problems at low cost. However they
that caused them. This approach has been commercialso conceal performance-critical information about each
ized for communications systems [17] but is inappropriatéomponent from its neighbors. For example, conventional
for arbitrary distributed software because it is infeasibl operating systems offer strong inter-process fault ismat
to enumerate the faults and symptoms of arbitrary comput suffer side effects including redundant data buffering
puter programs. In addition, this approach has no learningnd copying. The 10-Lite buffering/caching subsystem re-
or adaptation aspects, which our probabilistic models praains fault isolation while eliminating redundancy [13].
vide. Resource virtualization permits application developers
The Pinpoint system of Chegt al. analyzes run-time to ignore congestion and scarcity, which they often do to
execution paths of complex distributed applications to atthe detriment of performance. The SEDA framework en-
tomatically detect failures by identifying statisticabyp- courages application designers to explicitly address-over
normal paths; faulty paths can then aid a human analystinad and resource scarcity while retaining many of the
diagnosing the underlying cause [4]. Kiciman & Fox de-henefits of virtualization [19].
scribe in greater detall the use of probabilistic contegef Fina"y, decentralized management and geographic dis-
grammars to detect anomalous paths in Pinpoint [10]. Oufibution allow different organizations to cooperatively
approach shares with Pinpoint the use of statistical tecBerve a global user base, but these trends also diffuse the
niques, but the instrumentation we require is more read”ynow|edge required for performance debuggmg Agu||_
available and we seek to diagnose performance problerggaet al.and Coheret al. confront theopacityof complex
rather than faults. modern applications by illuminating performance bottle-
Jain describes a traditional performance debuggingecks and correlates of performance in unmodified dis-
technique to generateisual signatures of performance tributed applications [1, 5]. Our signature-based syndrom
problems [8]. Popular in the 1970s, “Kiviat graphs” dis-identification methods reduce redundant diagnostic effort
play a handful of utilization metrics in such a way thatacross time, geography, and organizational boundaries.
resource bottlenecks and imbalances assume a distinctive
appearance. Like our signatures, Kiviat graphs of differen
systems (or of different conditions on a single system) in§  Discussion
vite comparison and facilitate similarity matching. How-
ever our signatures differ in several ways from this classi
technique: signatures are intended &mtomatedndex-
ing, retrieval, and similarity measurement; they do nat rel
on human visual inspection; they scale to dozens or hu

6.1 On Root Cause Analysis and Diagnosis

The statistical and pattern recognition techniques under-

dreds of metrics: and thev i 1 lcation-| /ing the automated extraction of the signatures capture
reas or metrics, an ey Incorporate application-leved, q|ation, not necessarily causation. Indeed, as is well

performance measures in addition to utilization metrics. |\ o\\'in the statistics and other communities. the abil-

Signatures have been used extensively in virus scafy to infer causation from pure observation is limited and
ning and intrusion detection [12] Statistical teChniqueﬁ'] most cases impossib|e [14] By pure observation we
are often employed to flagnomalousactivity automati- mean lack of direct intervention into the system or addi-
cally, but signatures afaliciousbehavior are almost al- tjonal information, coming from human experts regarding
ways defined manually. Kephatal.describe a statistical the causal relations and paths in the system. In some in-
method for automatically extracting virus signatures for &tances, time information and information about the se-
commercial detection product [9]. quence of events can be used as heuristics to find causal

Redstoneet al. advocate automating the diagnosis ofconnections. This has been attempted in many domains
user-visible bugs by leveraging the efforts of troubleghooincluding this one, most notably in [1]. We leave as fu-
ers worldwide [15]. These authors note that such problentsre work the inclusion of this kind of information into
have often already been diagnosed and documented, e@ur approach and the exploration of its utility, although
in newsgroups and vendor bug databases. The real prake remark that there is nothing in principle that prevents
lem isfinding the right diagnosis byndexinginto a vast us from considering “sequences” of signatures or adding
disorganized knowledge base. Signatures can help ustime information (including precedence information) into
realize the vision that Redstoeéal. sketch. the creation of the signatures and the subsequent analysis.
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It follows from this discussion that we cannot claim (nortrue cause of a problem is or was: forensic data may be
have we ever) that the approach advocated in this papdiscarded before it's needed, and each operator is typi-
yields a root cause of the problem. Indeed, even with higally focused on either debugging or exonerating her/his
man expert knowledge, root cause analysis is far from eagjece of the system. So un-annotated or imperfectly an-
(recall the example of Section 3.3). Nevertheless, we posotated data should be considered realistic. We hope that
tulate that offering the capabilities of systematic simifiia  the availability of a systematic way to exploit annotations
search and clustering of correlated metrics helps in naas proposed in this paper, will encourage a change in best
rowing down the possible causes and is therefore usefptactices. Our acceptance of good clustering and the cen-
in the diagnosis process. In addition, it may not be nedroids as a “proxy” for annotated data represents a practi-
essary to reach a root cause to produce a repair. As diffial approach when un-annotated data is all that we have at
cult as root cause analysis has proven to be over the yeansy disposal.
perhaps a more pragmatic approach would be to automat-Of course much more monitoring and experience with
ically map the evidence for the faults and metric state to eeal data is needed to validate our approach over the long
finite set of possible repair actions. run. The contribution of our present work is proposing and

implementing specific methods and illustrating the value
i of indexing, similarity search, and clustering for diagisos
6.2 On Annotations, the Real World, and g, real data.

Clustering

For the scenarios we target—assistance in narrowirf3 Performance Impact of Our Approach
down the likely causes of performance/availability prob- h f ints wh h add i
lems and the ability to re-use diagnostic efforts acros-g ere are five points where our approach adds compu
: t%ﬁ,ttlon cost or other overhead that may impact perfor-

from un-annotated data logs. Our methodology relies o ance considerations: overhead_of col_lect_mg data,_ con-
the pragmatic assumption that if our clusters have low er?—rUCtlon of TAN. models fo_r metric attr!butlon [5], sig-
tropy, the clusters have done a good job of grouping wh ature computation, clustering, gnd retneva!. Our system
would likely be signatures with the same annotation if th ata is collected by a commercial tool that is widely de-

data were annotated; this makes clustering useful even Ij]oyed In |_ndustry; the tool is designed to minimize per-
oymance impact on the observed system, and at any rate

th n f annotations. Thi mption i rt; .
e absence of annotations S assumption IS suppo g)e widespread use of such tools represents a sunk cost.

by our results demonstrating that the method we use f dated svstem data is coalesced and reported periodi-
signature generation results in both high-quality cluster P Y . ) ported p
ally, generally in 1 or 5 minute epochs. Building and

and excellent precision-recall behavior when we do havd aintaining an ensemble of TAN models takes 5-10 sec-

annotations. In fact, the clustering was able to recognizggndS with our code. so it is practical to applv the ensemble
75% of the IDC cases as belonging to the same cluster. ’ P pply

Similarly, our evaluation of how well our technique Canalgonthm to system data in real time. In our prototype im-

. X . X : . plementation in Matlab, given an ensemble with approxi-
identify recurring problems is really just checking wherthemately 41-67 models (generated using one month of sys-

we would |dent|fy two data points as b'elonglng t'o th.etem data), it takes about 200ms to compute a signature for
same cluster if they were collected at different points e epoch. Using the-medians algorithm (wittk=10)

“Teer_zagselljllrt]é VgSetZ?tr égihCIgjtshtg:m\?Vﬁgg tsy:%naégre\,_vzas?g cluster 7507 signatures (about one month when using
query PP ) y do, -minute epochs) takes less than 10 seconds. Finally, re-

tentatively conclude that the size of a particular cluster r trieving the top 100 matching signatures from a database

flects how many violations can be aftributed to the SYNot 7700 signatures takes less than one second. We con-

drome” that cluster represents; when a human operator 'Blude that signature generation can proceed in real time,

vesﬂgates_further, cha_lra_cterlzes and names the syndrorgﬁd analysis with clustering or retrieval is fast enough to
and describes remediation procedures, these can be RSL-done at will

manently stored in the database.

Still, it is a fact of life in the IT trenches that annota-
tions will be scarce and also imperfect. Part of the reason Conclusions
forimperfect annotations on real data results from the real
ity that the administration of different subsystems ordier A particularly relevant result we showed is that simply
of an application may be delegated to different individurecording the values of raw system metrics does not pro-
als distributed across the organization, as we experienceile an effective way to index and retrieve syndrome data:
when investigating the problem and resolution describealmore sophisticated way of generating “signatures” is re-
in Subsection 4.3. Our experience with other companieguired. We showed the efficacy of one particular way
running multi-tier applications confirms that there is of-of doing this using previous work on using ensembles of
ten no single administrator responsible for understandirayesian networks to determine which low-level metrics
the end-to-end paths through the application. One reswte “implicated” in particular situations and using a list o
of this is a frequent lack of clear agreement on what ththose metrics (but not their values) as the signature. We
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showed that clustering and retrieval using signatures gtt0] E.Kiciman and A. Fox. Detecting application-leveltags
lows diagnosticians to leverage the results of past work
and identify similar or recurring problems, even when

no problem annotations or application-specific knowledgg 1]
are available. Indeed, even our prototype implementation,
under these circumstances and working with un-annotated
data, was helpful in correcting a misdiagnosis as well 332

correctly classifying a recurrent problem, procedures tha

required the exchange of 80 pages of notes among adm
istrators to perform manually.

However, in the large, we are not necessarily advocat-

ing for our particular choices of signature construction,
clustering, similarity metrics, etc. Indeed, we believatth

there is room for improvement and further study in any of

these issues. Rather, we are advocating the idea that be[ﬁ@
able to automatically distill the essence of an observed un-

desirable behaviognd indexa machine-manipulable rep-

resentation of that essence for troubleshooting, is a&bgicl16]

next step for systems research on automation that will fa-
cilitate scaling and increase the availability of our sysde

In addition, it will enable a systematic way of capturing[17]
knowledge and expertise from operators (through annota-
tions of diagnoses and repair actions) that can be leveragad]

by other operators across geography and across time.
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