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Abstract
In operating today’s complex systems, the lack of a sys-

tematic way to capture and query the essential system state
characterizing an incident of performance failure or un-
availability makes it difficult for operators to distinguish
recurring problems from new ones, to leverage previous
diagnostic efforts, or to establish whether problems seen
at different installations of the same site are similar or dis-
tinct. We present a method for automatically extracting
from a running system an indexablesignaturethat dis-
tills the essential system state associated with a problem
and can be subjected to clustering and similarity-based re-
trieval to identify when an observed system state is sim-
ilar to a previously-observed state. This allows operators
to identify and quantify the frequency of recurrent prob-
lems, or to leverage problem observations at one site in
diagnosing problems at another site. We show that the
naive approach to constructing these signatures is ineffec-
tive, leading us to a more sophisticated approach based on
statistical modeling and inference. Our method requires
only that the system’s metric of merit as well as a collec-
tion of lower-level operational metrics be collected, as is
done by existing commercial monitoring tools. Even if
the traces have no annotations of prior diagnoses of ob-
served incidents (as is typical), our technique successfully
clusters system states corresponding to similar problems,
allowing diagnosticians to identify recurring problems or
to name the “syndrome” of a group of problems later. We
validate our approach on both synthetic traces and sev-
eral weeks of production traces from a customer-facing
geoplexed 24×7 system; in the latter case, our approach
identified a recurring problem that had required extensive
manual diagnosis, and also aided the operators in correct-
ing a previous misdiagnosis of a different problem.

“Those who cannot remember the past are
condemned to repeat it.” — George Santayana

1 Introduction

When complex software systems misbehave—whether
they suffer a partial failure, violate an established service-
level objective (SLO), or otherwise respond in an unex-
pected way to workload—understanding the likely causes
of the problem can speed repair. While a variety of prob-
lems can be solved by simple mechanisms such as reboot-
ing [3], many cannot, including problems related to a mis-
allocation or shortage of resources that leads to a persis-

tent performance problem or other anomaly that can only
be addressed by a nontrivial configuration change. Under-
standing and documenting the likely causes of such prob-
lems is difficult because they often emerge from the be-
havior of a collection of low-level metrics such as CPU
load, disk I/O rates, etc., and therefore simple “rules of
thumb” focusing on a single metric are usually mislead-
ing [5].

Furthermore, today there is no systematic way to lever-
age past diagnostic efforts when a problem arises, even
though such efforts may be expensive and are on the crit-
ical path of continued system operation. To that end we
would like to be able to recognize and retrieve similar
problem instances from the past. If the problem was pre-
viously resolved, we can try to justify the diagnosis and
perhaps even apply the repair actions. Even if the problem
remained unresolved, we could gather statistics regarding
the frequency or even periodicity of the recurrence of that
problem, accumulating necessary information for priori-
tizing or escalating diagnosis and repair efforts. In order
to do these things, we must be able to extract from the sys-
tem anindexabledescription that both distills the essen-
tial system state associated with the problem and that can
be formally manipulated to facilitate automated clustering
and similarity based search. Meeting these requirements
would enable matching an observed behavior against a
database of previously observed ones both for retrieval and
determining whether the problem is a recurrent one.

Our contributions are as follows:

1. A formal representation orsignaturethat captures the
essential state of an enterprise system and is effec-
tive for clustering and similarity based retrieval using
known techniques from pattern recognition and infor-
mation retrieval [6]. We show that the construction
of an effective signature is nontrivial—the naive ap-
proach yields poor clustering and retrieval behaviors,
but good results are obtained with an approach based
on our prior successful use of statistical methods to
capture relationships between low-level system met-
rics and high-level behaviors [22, 5].

2. The use of this representation to cluster and identify
performance problems, and compute statistics about
the frequency of their occurrence. This in turn lets
an operator distinguish a recurrent condition from a
transient or first-time condition, and even annotate
the corresponding signature(s) with a repair proce-
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dure or other explanation for future reference when
the same problem recurs.

3. A demonstration of how the representation and clus-
tering can be used across different sites to aid diag-
nosis.

Our experimental validation is conducted on a realis-
tic testbed with injected performance faults, and on pro-
duction traces from several weeks of operation of a real
customer-facing Web application in our organization.

The rest of the paper is organized as follows. Sec-
tion 2 outlines our approach and methodology and pro-
vides some background on the statistical modeling tech-
nique used. Section 3 describes both our controlled
testbed and the production traces used in our experiments.
Section 4 presents our results. Specifically, Section 4.1
compares three methods of signature construction. Sec-
tion 4.2 illustrates the use of our method for identifying
recurrent problems in a real production environment. Sec-
tion 4.3 shows that signatures can be leveraged across
sites. In Section 5 we review related work. We discuss
some caveats and ramifications in Section 6 and offer con-
cluding remarks in Section 7.

2 Problem Statement, Approach, and
Methodology

We address three problems:

1. Signature construction: What representation should
we use to capture the essentials of the system state
and enable clustering (grouping) and retrieval?

2. Discovery and exploration: How do we facilitate the
identification of recurrent issues and the retrieval of
similar problems?

3. Evaluation methodology:

(a) How can we determine that our signatures are
indeed capturing the system state, that is, that
the information contained in them effectively
serves as a “fingerprint” of a high-level sys-
tem condition of interest such as a performance
anomaly?

(b) How can we verify that clustering (based on
these signatures) is meaningful, that is, that sig-
natures that are similar according to some simi-
larity metric are fingerprints of problems whose
diagnoses are similar?

(c) How can we evaluate the quality of retrieval,
that is, how can we verify that a query to re-
trieve similar signatures is returning a high per-
centage of actual matches with a low false pos-
itive rate?

The evaluation in particular has high practical impor-
tance: since our intent is to facilitate the exploration of
the past history of the system to identify recurrent prob-
lems and similar situations in different systems, the users
of our technology (system operators) must be confident

that problem instances reported as belonging to the same
group or cluster are indeed related. This is why our eval-
uation criteria are defined operationally, e.g., to say that
clustering is “meaningful” is to say that similar signatures
do indeed identify problems with similar root-cause diag-
noses in practice.

Without loss of generality, when we refer to an “Internet
service” in the following discussion, we mean an external-
request-driven, interactive application based on the stan-
dard three-tier architecture [7] of a stateless Web server,
a tier containing application logic possibly running on top
of a middleware platform, and a persistence tier containing
one or more databases.

2.1 Sketch of the Approach

We assume the system’s operational policy defines one or
more reference metrics (average response time, request
throughput, etc.) and athresholdon each of these met-
rics (or a threshold over a collection of metrics). These
reference metrics and the thresholds define aservice level
objectiveor SLO. We say the system isin violation of its
SLO if the metric(s) exceed the policy threshold, and in
compliancewith its SLO otherwise. The SLO may be
defined as an aggregate, for example, “at least 60% of
requests during a 5-minute interval have a response time
less thanT”.1 Our ultimate objective is to understand the
underlying causes of high-level system behavior and how
these causes manifest as SLO violation or compliance. We
concentrate on the questions stated above of identifying
recurrent performance issues, and the automatic retrieval
of similar problems.

We begin by evaluating several candidates for represen-
tations of the essentials of the system state, which we call
signatures. We then evaluate the use of automated cluster-
ing [6] for grouping SLO violations in terms of their signa-
tures, identify recurrent problems, and expose collections
of metrics that together can become asyndromeof a per-
formance problem. We then evaluate information retrieval
techniques for finding signatures based on similarity [20].
This ability will enable an operator to search databases in-
dexed with signatures and find past occurrences of similar
problems. This in turn will result in the operator leverag-
ing past diagnostics and repair efforts.

In our evaluation we will use data from traces collected
from both a realistic testbed and workload, and from a pro-
duction system that has suffered several SLO violations
over a period of three months. In the case of the testbed
we run the system and periodically inject specific faults
in order to trigger SLO violations. The testbed enables us
to annotate each SLO violation with its root cause, pro-
viding ground truth for verifying the results of the auto-
mated clustering and of similarity retrieval. For the real

1Note that even SLO’s expressed in terms of performance are deeply
connected to availability, because availability problemsoften manifest
early as performance problems and because understanding how different
parts of the system affect availability is a similar problemto understand-
ing how different parts of the system affect high-level performance.
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application, we have annotations for only a subset of the
instances of SLO violations, and therefore it is only in
these instances that we will verify the use of information
retrieval techniques. We will define in Section 2.3 a no-
tion calledpurity that will enable us to evaluate the use
clustering even in cases with partial annotations.

Note that whether annotations are available or not, clus-
tering enables us to group SLO violations in terms of sim-
ilar signatures, and discover different types of SLO viola-
tion instances, recurrent problems, etc. Similarly, retrieval
enables us to find and leverage past diagnoses and repairs.
For example, as we report in Sections 4.2 and 4.3 we find
that if the operators of the production system had had ac-
cess to our technology, a problem that was initially identi-
fied as unique but later found to be a recurrence of a prior
problem could have been immediately identified as such.
Also, one incident that was initially classified as a recur-
ring problem exhibited a very dissimilar signature (using
our method) than the alleged original problem; manual re-
diagnosis showed that our method was correct, and indeed
the second problem wasnot a repeated manifestation of
the first problem.

2.2 Signatures: Capturing System State

The first issue we address is that of a representation that
captures those aspects of system state that serve as a “fin-
gerprint” of a particular system condition. Our goal is to
capture the essential system state that contributes to SLO
violation or compliance, and to do so using a representa-
tion that provides information useful in thediagnosisof
this state, in clustering (grouping) of this state (with sim-
ilar states), and in the retrieval process. We will call such
a representation asignatureof the system state. We make
the following assumptions:

1. We assume that we can continuously measure
whether the system is in violation or compliance at
any given time with respect to the SLO. This can be
done, for example, by examining server logs contain-
ing timing information or by running probes.

2. We assume that we can continuously measure a col-
lection of metrics that characterize the “low level”
operation of the system, such as CPU utilization,
queue lengths, I/O latencies, etc. This information
can come from OS facilities, from commercial opera-
tions tools such as HP OpenView, from instrumented
middleware (as was done in [4]), from server logs,
etc.

Since we can by assumption collect low-level system
metrics, it would seem reasonable as a starting point to
simply use these raw values as the signature. As will be
seen in Section 4.1, our experiments allow us to conclude
that signatures based on using raw values are not as ef-
fective as an approach that builds on our prior work on
metric attribution [22, 5]. In that work we automatically
build models that identify the set of low-level system and

application metrics that correlate with each particular in-
stance of the SLO state. We hypothesize that this attribu-
tion information is the key to constructing signatures that
correctly characterize and distinguish different causes of
SLO violations. We therefore spend the rest of this sec-
tion reviewing the relevant aspects of that work and how it
relates to signature construction.

The metric attribution process goes as follows. The in-
put is a data log containing vectors~M of low-level system
and application metrics and the stateY (compliance or vi-
olation) of the system. We divide time into regular epochs
(e.g., five-minute intervals) and we have one such vector
for each epoch. Each elementmi of the ~M for an epoch
contains the value of the specific metric, an average over
the epoch, andY contains a discrete value depending on
whether the SLO was violated or not. Relying on pattern
classification techniques and probabilistic modeling, the
algorithms in [22, 5] yield as output an ensemble of prob-
abilistic models characterizing the behavior of the metrics
during intervals of both compliance and violation.

Each one of these models essentially represents the re-
lationship between the metrics and the SLO state as a
joint probability distribution. We use the Tree-Augmented
Naive Bayes models (TAN) to represent the joint proba-
bility distribution. Out of this distribution we can extract a
characterization of each metric and its contribution to the
SLO state. Let the termP(mi |mpi ,s

−) represent the re-
sulting probabilistic model for metricmi under violations
(s−), and letP(mi |mpi ,s

+), represent a probabilistic model
for the same metric under an SLO state of compliance.2

Using these models we can identify for a given instance of
~M, which metrics (because of their values) are more likely
to come from their characteristic distribution during vio-
lation. This process is calledmetric attribution. Formally,
for a given instance, a metric is flagged as “attributable”
if:

logP(mi |mpi ,s
−) > logP(mi |mpi ,s

+), (1)

that is,mi ’s value is closer to its characteristic value for the
“violation” distribution than to its characteristic valuefor
the “compliance” distribution. The interpretation is that
the observed value ofmi is more likely to come from the
distribution where the SLO stateY is that of violation. In
addition, the methods in [5, 22] are able to identify metrics
that yield no information on the SLO state. We call such
metricsirrelevant.

The process of constructing signatures is as follows.
Given a system trace, we follow the procedure detailed
in [22] to continuously learn an ensemble of models; for
every epoch, a relevant (to the particular SLO state) sub-
set of models from the ensemble is selected; from those
we extract a list of metrics whose values are “abnormal”
(resp. “normal”), that is, the values are identified as being
closer to their characteristic values during periods of SLO

2The termmpi represents a metric directly correlated with metricmi
in the Bayesian network representation. Interested readers should con-
sult [5].
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violation (resp. compliance).3 We then extract the signa-
tures, by yielding a transformed data log containing a set
of vectors~Swhere:

• entrysi = 1 if that metric is selected by the relevant
models whose value is determined to be abnormal.
We say the metric isattributed;

• entry si = −1 if the metric is selected by relevant
models but isnot found to be “abnormal”. We say
that the metric isnot attributed;

• entrysi = 0 if the metric is not selected by any of the
models at all—we say that the metric isirrelevantto
the SLO state.

Each vector~S is then asignaturefor that epoch. Note
that we produce a signature for every epoch including
those in which the SLO was not violated. The intended
semantics of a signature are as follows. A metric receives
a value of 1 if its raw value is more likely to come from the
distribution of values associated with SLO violation (i.e.,
Inequality 1 is true). These semantics holds for both peri-
ods of violation and compliance. As will become appar-
ent, these signatures are useful both for characterizationof
the behavior of the system in compliance periods, and in
violation periods.

Thus, given system traces collected on an Internet ser-
vice, our approach generates a database consisting of the
signatures describing the system state, coupled with the
SLO state.

2.3 Clustering of Signatures

The objective when applying clustering to a database of
signatures is to find the natural groupings or clusters
of these signatures that characterize the different perfor-
mance problems and normal operation regimes. The out-
put of the clustering is a set of clusters, plus a charac-
terization of the cluster center. By inspecting the actual
elements of the signature database in each cluster we can
identify different regions of normality as well as recurrent
problems. In addition, the centroid of a cluster of problem
behaviors can be used as asyndromefor the problem, since
it highlights the metrics that are in a sense characteristicof
a set of manifestations of the same problem.

In order to render the description above operational,
we need to specify adistance metricand a clustering al-
gorithm that minimizes the distortion (sum of distances
of each signature to its nearest cluster center). In this
paper we explored both theL1 and L2 norms as dis-

tance metrics (Lp = p
√

∑i |x
i
1−xi

2|
p). As our basic clus-

tering algorithm we will use the standard iterative algo-
rithms [6]: k-medians for theL1 norm, and k-means for
theL2 norm. These algorithms find k cluster centers (me-
dians and mean respectively) that minimize the distortion

3Mechanism for fusing the information from different modelsare de-
scribed in detail in [22].

as defined above. We will report only on the results com-
ing from theL1 norm. Although the results for theL2 norm
were quantitatively different, they were qualitatively sim-
ilar and offered no new insight as far as making decisions
about the signature representation. In addition the centers
of the clusters in the k-medians case are represented by
actual signatures that are members of the cluster.4

Ideally, we would like each cluster to contain signatures
belonging to a single class of performance problems (SLO
violations), or else signatures belonging only to periods of
SLO compliance. We introduce a score determining the
purity of a clustering to formalize this intuition. In the
case where we have no annotations, we distinguish sig-
natures only in terms of their corresponding SLO state
(compliance or violation). We count the number of sig-
natures in each cluster that describe epochs of compliance
and the number that describe epochs of violations. These
counts are then normalized by the total number of sig-
natures (the sum of the two), to produce probability es-
timatespc and pv (pc + pv = 1). This are used in turn
to score “purity” of each cluster. A cluster is pure if it
contains signatures of only compliance or only violation
epochs, i.e., if eitherpc or pv are 1. With these prob-
abilities, we compute the entropy of each cluster, given
as: H = −pclog2(pc)− pvlog2(pv). For a pure cluster,
entropy is 0, which is the best result. The entropy is 1
when the cluster is evenly split between the two types of
signatures (pc = pv = 0.5). It is straightforward to gen-
eralize the definition of purity score when there are labels
distinguishing different annotations corresponding to SLO
violations.

We compute the overall average entropy of the all of the
clusters weighted by the normalized cluster size to give us
a measure of purity of the clustering result. Average en-
tropy close to 0 is a strong indication that indeed the signa-
tures captured meaningful characteristics of the periods of
violations in contrast to periods of non-violation. Indeed,
we will use the purity score to compare different proposals
for generating signatures (see Figures 2, and 3).

In order to include the purity information in the clus-
tering process, we added an iterative loop using the stan-
dard k-medians (k-means) as a building block.5 In the
first step k-medians is applied to the whole databaseD
of signatures, yieldingk clusters as its output. The purity
score is applied to each one of these clusters. If the score
is above an input thresholdtp, then the procedure stops.
Otherwise, k-medians is applied once more to the signa-
tures for those clusters that didn’t pass the test. There are
two parameters used to control these process: a numberk
which is the maximum of clusters expected in each appli-
cation ofk-medians, and the totalktot of clusters expected.
The process stops whenktot is reached. There are a num-
ber of procedures for determining these parameters, in-

4A complete analysis of these norms is well beyond the scope ofthis
paper and will be explored in future work.

5In the rest of the description we will only mention k-medianswith
the understanding that when theL2 norm is used the actual algorithm is
k-means.
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cluding score metrics with regularization components and
search procedures which increase their value gradually un-
til no significant improvement in the clustering distortion
is achieved [6]. In this paper we explore the space ofktot
and setk = 5. These values where appropriate for eval-
uating the power of the signature extraction process and
displaying its properties. We also checked the amount by
which our algorithm will affect the minimization in dis-
tortion with regards to a straightforward application of the
k-medians algorithm and found it to be negligible.

When we compare different candidate methods of sig-
nature construction in section 4.1, we will use the purity of
the clustering process as providing evidence of the infor-
mation contained in each approach. Signatures that enable
clusterings with a higher degree of purity (lower entropy)
will be favored as they clearly contain enough information
to enable the automated grouping of the different SLO re-
lated states (see Section 4.1.1).

2.4 Retrieval of Signatures

Using information retrieval techniques we can retrieve
from a database all previous instances that are “similar” to
a specific signatureS. This capability enables us to lever-
age past diagnosis and repairs and in general all informa-
tion about previous instances displaying similar character-
istics (as captured in the signature vector).

As in the case of clustering, similarity is formalized in
the context of a distance metric, and as in that case, we
explored bothL1 andL2 norms, displaying only the results
for theL1 norm.

Our evaluation will follow the standard measures from
the machine learning and information retrieval commu-
nity [20]. The evaluation focusses on the quality of the
retrieval with respect to the similarity and the quality of
the signatures. If a specific annotationA is associated with
a (set of) signature(s)Swe expect that when similar signa-
tures are used, the retrieval process yields signatures also
associated with annotationA. Therefore, in evaluating our
retrieval results, we consider only those signatures associ-
ated with annotations (see Sections 3.1 and 3.3).

Formally the process of retrieval proceeds as follows:
given a signature, return theN closest signatures to it
from the existing signature database. Given known an-
notations both to the query signature and the signatures in
the database, we compute the two standard measures of
retrieval quality: Precision and Recall.

For a given query, precision measures what fraction of
theN returned items have the matching annotation (1.0 is
perfect); recall measures the percentage of signatures in
the database with the same annotation as the query that
are actually retrieved. Note that the maximal value of 1.0
is achieved only whenN is at least equal to the number of
signatures with the same annotation as the query signature.
As N increases recall goes up but precision typically goes
down, as it becomes harder to retrieve only signatures that
have a matching annotation.

Following the common practice in the information re-
trieval community, we increaseN and measure the pre-
cision/recall pair, until we achieve a recall of 1.0. We
then plot precision as a function of recall, to produce the
Precision-Recall curve (see Figure 4 for an example). A
perfect precision/recall curve has precision of 1.0 for all
values of recall. As in the case of clustering, we will use
precision and recall to evaluate the different proposals for
a signature (see Section 4.1.2).

3 Trace Collection and Characterization

Our empirical results are based on large and detailed traces
collected from two distributed applications, one serving
synthetic workloads in a controlled laboratory environ-
ment and the other serving real customers in a globally-
distributed production environment. These two traces al-
low us to validate our methods in complementary ways.
The testbed trace is annotated with known root causes of
performance problems. Annotated data allows us to eval-
uate our signature-based diagnostic methods in terms of
simple information-retrieval performance measures (e.g.,
precision, recall). The production trace is not annotated as
well or as thoroughly as the testbed trace. By treating it as
an unlabeled data set, we can use it to evaluate the effec-
tiveness of the signature clustering, which in turn provides
identification of the “syndromes” describing performance
problems. Since we do have annotations to some of the
signatures in the production trace, we can further validate
the accuracy of our retrieval on real-world data.

Our traces record two kinds of data about each applica-
tion: application-level performance data for our models’
SLO indicator, and system-level resource utilization met-
rics (e.g., CPU utilization). Our tools measure the latter as
averages in non-overlapping windows.

3.1 Testbed Traces

Our controlled experiments use the popular PetStore e-
commerce sample application, which implements an elec-
tronic storefront with browsing, shopping cart and check-
out. Each tier (Web, J2EE, database) runs on a sep-
arate HP NetServer LPr server (500 MHz Pentium II,
512 MB RAM, 9 GB disk, 100 Mbps network cards,
Windows 2000 Server SP4) connected by a switched
100 Mbps full-duplex network. Apache’s extended
HTTPD log format provides us with per-transaction re-
sponse times and we obtain system-level metrics from HP
OpenView Operations Agent running on each host. A
detailed description of our testbed’s hardware, software,
networking, and workload generation is available in [22].
We collect 62 individual metrics at 15-second intervals
and aggregated to one-minute windows containing their
means and variances. We pre-process our raw measure-
ments from the Apache logs to average transaction re-
sponse times over the same windows and then join all data
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from the same application into a single trace for subse-
quent analysis.

We use the standard load generatorhttperf [11] to
generate workloads in which simulated clients enter the
site, browse merchandise, add items to a shopping cart,
and checkout, with tunable probabilities governing the
transition from “browse item” to “add item to cart” (prob-
ability Pb) and from “add item to cart” to “checkout cart”
(probabilityPc). We measure the average response time of
client requests in each 1 minute window and require that
the average response time stay below 100 msec to main-
tain SLO compliance. We created three handcrafted fault
loads designed to cause SLO violations. In the first, we
alternate one-hour periods ofPb = Pc = 0.7 with one-hour
periods ofPb = Pc = 1.0 (a “BuySpree”). In the second,
we execute a parasitic program on the database server ma-
chine that consumes about 30% of the available CPU dur-
ing alternating one hour intervals, but no other major re-
sources (“DBCPU contention”). The third faultload does
the same thing but on the application server rather than the
database server (“APPCPU contention”).

Note that these faultloads simulate both faults due to
internal problems (CPU contention) and faults resulting
from changes in workload (extreme buying plateaus dur-
ing BuySpree). In both cases, the injected faults corre-
spond toannotationsof known root causes of performance
problems in the final processed trace that we employ in our
analyses and evaluations.

3.2 Production System Traces

Our second trace is based on measurements collected at
several key points in a globally-distributed application
that we call “FT” for confidentiality reasons. FT serves
business-critical customers on six continents 24 hours per
day, 365 days per year. Its system architecture therefore
incorporates redundancy and failover features both locally
and globally, as shown in Figure 1. Table 1 summa-
rizes key hardware and software components in FT, and
the transaction volumes recorded by our traces (Table 2)
demonstrate the non-trivial workloads of the FT instal-
lations. All hosts at the application server and database
server tiers are HP 9000/800 servers running the HP-
UX B.11.11 operating system, except that one database
server in Asia is an HP rp7410 server.

HP OpenView Performance Agent (OVPA) provides
system utilization metrics for application server and
database hosts. FT is instrumented at the application level
with ARM [18], providing transaction response times.
OVPA and ARM data are aggregated into 5-minute win-
dows in the processed traces we analyze. We have traces
from the Americas and Asia/Pacific hubs but not from Eu-
rope. Table 2 summarizes our FT traces.

The service-level agreement associated with FT de-
fines different response time SLOs for different transac-
tion types. Compliance is measured on every transaction
and counts are aggregated in 5-minute buckets. Our cri-

# # # RAM
Region Role hosts CPUs disks (GB)

Amer App srvr 2 16 16 64
Amer DB srvr 2 12 18 32

EMEA App srvr 3 16 10 32
EMEA DB srvr 2 6 ? 16

Asia App srvr 2 12 63/22 20
Asia DB srvr 2 6 8 16

Table 1: Key hardware and software components in FT.
The two app server hosts in Asia have different numbers
of disks. All app servers ran WebLogic and all DB servers
ran Oracle 9i. Most of the DB servers had 550 MHz CPUs.

transactions/min % SLO
Server Dates mean 95 % max viol

AM1 12/14–1/14 208.6 456.4 1,387.2 23.6
AM2 12/13–2/08 207.9 458.0 977.4 22.5

AP1 12/17–1/05 39.9 118.2 458.4 26.2
AP2 12/17–1/30 52.1 172.8 775.0 13.1

Table 2: Summary of FT application traces. The last col-
umn is the percentage of transactions which violated their
SLO in the data. Trace collection began in late 2004 and
ended in early 2005. “AM” and “AP” servers were located
in the Americas and Asia, respectively.

terion for SLO violation is whether more than 40% of the
transactions in a 5-minute window violated their transac-
tion SLO.

FT is well suited to our interests because its require-
ments include high performance as well as high availabil-
ity. Furthermore performance debugging in FT is partic-
ularly challenging for two reasons. First, different orga-
nizations are responsible for FT itself and for the appli-
cation server infrastructure in which crucial FT compo-
nents run (the latter is delimited with a shaded dashed
oval in Figure 1); opportunities for inter-organizational
finger-pointing abound when end-to-end performance is
poor. Second, FT’s supporting infrastructure is physi-
cally partitioned into three regions with separate opera-
tional staffs. A performance problem that occurs in the
afternoon in each region, for example, will occur three dif-
ferent times, will appear to be specific to a single region
each time it occurs, and will demand the attention of three
separate teams of system operators. Cost-effective per-
formance debugging in FT requires that commonalities be
recognized across regions, across time, and across orga-
nizational boundaries, and that different teams of human
diagnosticians leverage one another’s efforts.

Another attractive feature of our FT traces is that some
of our 5-minute samples are annotated, in the sense that
they correspond to times when we know that a specific
performance problem occurred whose root cause was sub-
sequently diagnosed. In the next section we describe this
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Figure 1: Architecture of the “FT” production system. FT is aglobally-distributed multi-tiered application with regional
hubs in the Americas, Europe/Middle East/Africa, and Asia.Different organizations are responsible for the FT applica-
tion and the application server on which it runs; the latter is indicated by a shaded dashed oval in the figure. FT has a
globally-distributed main database and an additional auxiliary databases, managed by a third organization, shown in the
lower right.

problem, which illustrates both the challenges that we face
and the opportunities that our approach attempts to ex-
ploit.

3.3 A Diagnosed Problem: Insufficient
Database Connections (IDC)

The FT production system experienced a recurrent per-
formance problem mainly in the Americas domain dur-
ing December 2004 and January 2005. During episodes
of this problem, business-critical customers experienced
latencies of several minutes on transactions that normally
complete within seconds. The operators who first detected
the problem described it as “stuck threads” in the applica-
tion server because WebLogic issued messages in a logfile
each time it diagnosed a stuck thread. There can be many
causes for threads to become stuck, therefore it is neces-
sary to look for other symptoms to diagnose the cause.

Due to the severity of the problem, a joint task force
comprising both FT application developers and applica-
tion server administrators quickly formed to address it.
This team eventually diagnosed and repaired the root
cause of the performance problem, thus providing an-
notations for data points in our traces corresponding to
episodes. Our account of the problem is based on detailed
bug-tracking database entries and e-mail correspondence
among the troubleshooters.

After several weeks of debugging, the problem was
traced to a too-small pool of database connections. Un-
der heavy load, application threads sometimes had to wait

more than 600 seconds to acquire a connection, and were
therefore flagged as “stuck threads” by WebLogic. The
problem was solved by increasing the connection pool size
by 25%. We use the annotation IDC (Insufficient Database
Connections) to refer to this problem.

4 Results

To substantiate our claims, we perform analysis on the
data collected from both the experimental testbed ex-
cited with synthetic workloads and from the globally-
distributed production environment described in Section 3.
We will use ETB (for Experimental TestBed) to identify
traces in the first case and RWA (Real World Application)
for the second case. For the ETB experiments, we in-
tentionally injected known faults into the system to cause
performance problems. The ETB trace is therefore reli-
ably annotatedwith the appropriate fault per epoch. In
the RWA we have only partial annotations, related to one
diagnosed problem, as described in Section 3.3. These
annotations as well as the fact that we have an objective
measure of performance as reflected by the SLO state of
compliance and violation will provide ground truth against
which we can compare the results of the clustering and re-
trieval operations.
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Metric Raw Attr. Raw Value
Name Value & Attr
transaction count 398.00 0 0
gbl app cpu util 97.47 1 97.47
gbl app alive proc 449 0 0
gbl app active proc 357 0 0
gbl app run queue 10.57 1 10.57
gbl app net in packet rate 817 1 817
gbl mem util 54.62 1 54.62
gbl mem user util 26.32 1 26.32
DB1 CPU util 25.96 -1 -25.96

Table 3: Examples of the different signature proposals,
showing a subset of the metrics collected in the production
environment. The first column is of raw values (not nor-
malized to preserve the context of these metrics), second
is metric attribution (with possible values in{+1,0,−1}),
and third is the AND of raw values and metric attribution.

4.1 Claim 1: Evaluating Proposals for Sig-
natures

We evaluate and compare three possible approaches for
creating signatures. Let~S denote the vector representing
the signature. In all cases the elementssi in this vector
correspond to a specific system, application, or workload
metric.

1. Raw values: in this case we represent a signature~S
using the raw values of the metrics. In other words
~S= ~M. Following common practice in data analy-
sis [6], we normalize these values to[0,1] to prevent
scaling issues from influencing similarity metrics and
clustering.6 This signature is the most naive and re-
quires no extra processing of the traces.

2. Metric attribution: If the attribution as described in
Section 2.2 flags the metricmi to be attributable, then
si = 1, otherwisesi =−1. If the metricmi is not even
considered by the models for the attribution process,
then the metric is considered to be irrelevant to the
SLO state andsi = 0. This requires significant com-
putation [5], but we showed in [22] that the compu-
tations could be done on millisecond timescales, al-
lowing this approach to be used in real time.

3. Metric attribution and raw values: This is similar to
the previous approach except that the raw value of the
metric is multiplied by its entrysi as explained in the
previous item.7.

We evaluate signature-generation approaches based on
the quality of clustering and retrieval operations. We
demonstrate that signatures based on metric attribution are
superior for our purposes. This strongly implies that met-
ric attribution captures information about system state that
goes beyond the raw values of the collected metrics, fur-
ther validating the results in [22, 5].

6The results with unnormalized values were much worse for thesig-
natures relying on the raw values.

7The intuition is that the information contained in the valueof the
metric is added to the information in the attribution process

We also remark that in our experiments we see that
some metrics are consistently deemed irrelevant for all
time epochs in the traces (e.g., in the RWA data the
root CPU, memory and disk utilization on the application
server were never found to be relevant by any model, get-
ting a value of 0 for all epochs). In some cases such an ob-
servation can lead to reducing the amount of metrics being
collected, although that loss of information can be detri-
mental in cases where a dropped metric becomes relevant
in future performance problems. In addition, because our
modeling process rapidly narrows down to a small number
of metrics that are highly correlated with the SLO state,
unless the expense of data collection is significant, we dis-
courage removing any metrics from the measurement ap-
paratus.

4.1.1 Signatures and Clustering

We perform a clustering of the signatures as described in
Section 2.3. To evaluate the quality of the clusters, we rely
on the notion of purity also described in the same section.
Entropy is used as a measure of purity with low entropy
implying that the clusters contain only one type of anno-
tated value (and hence are of a better quality). In the case
of the ETB we have four annotations: one refers to peri-
ods of SLO compliance and the other three are given by
the cause related to the injected problem. For the RWA,
we use SLO compliance and violation to check purity. In
both cases we vary the number of clusters and check the
variation in the weighted average entropy over the clus-
ters. Stable entropy across different cluster numbers is an
indication of the robustness of the clustering output. Fig-
ures 2 and 3 show the resultant entropy for each signature
generation method and number of clusters. Note that in
both cases, ETB and RWA, the clustering using attribution
information clearly yields purer clusters than the cluster-
ing using only the raw value of the metrics.

Table 4 provides the counts of each annotation with 9
clusters using signatures based on metric attribution on
one of the Americas production systems. Presenting the
raw counts in a cluster provides the application adminis-
trator a sense of the intensity of the pure clusters, giving
her the capability to focus attention on the more prominent
clusters of performance problem instances. It is worth not-
ing that one of the clusters (cluster 3) contained most of
the instances of the IDC problem (75%), which is signif-
icant since the clustering algorithm did not have knowl-
edge of the IDC annotation of these instances, but only
knew that these were violation instances. Cluster 9 and
10 indicate that for about 10% of the data the signatures
were not able to separate between periods of violation and
compliance.

4.1.2 Signatures and Retrieval

Figure 4 shows precision/recall curves of retrieval exer-
cises performed on the ETB traces using the three ap-
proaches described above for the signatures (see Sec-
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Cluster # # vio # compl Entropy
1 552 27 0.27
2 225 0 0.00
3 265 2 0.06
4 0 1304 0.00
5 1 1557 0.00
6 0 1555 0.00
7 0 1302 0.00
8 216 274 0.99
9 100 128 0.99

Table 4: Example of a clustering instance using signatures
based on metric attribution. The first column is a count
of number of violation instances, the second shows the
number of compliance instances, and the third shows the
cluster entropy based on the purity of the cluster. Cluster 3
contains almost all the instances corresponding to the IDC
problem; 201 instances of the 265 violation instances in
cluster 3 are annotated as the IDC problem, the remainder
68 IDC annotated instances are distributed between cluster
1 and 2.

tion 2.4 for the definition of these curves). Precision/recall
performance is better in direct proportion to the area under
its curve. Clearly the use of attribution provides an infor-
mational advantage, as the curves using attribution are far
superior.

Our real-world traces were collected during a period
when a misconfiguration was causing a performance prob-
lem (the “IDC” problem discussed in Section 3). Over-
all, 269 epochs were annotated with this problem. Fig-
ure 5 shows the location of these epochs over the month
long trace, overlayed on the value of the reference metric
(transactions average response time). It can be seen that
the issue occurred intermittently over that period.

Figure 6 shows the precision-recall graphs for retriev-
ing signatures of the IDC problem. The graph shows that
high precision is achieved for a relatively large range of
the recall value. For example, of the top 100 signatures
retrieved, 92 are correctly retrieved, leading to a precision
of 92% (and recall of 34.2%). Such a precision would be
more than sufficient for an operator to safely infer that the
label attached to the majority of signatures being retrieved
matches the problem described by the query signature. As
in the case of clustering, these results confirm that the use
of attribution in the generation of signatures provides the
required information.

4.2 Claim 2: Identifying Recurrent Prob-
lems

We show that the clustering is meaningful: each cluster
groups signatures that would have the same annotations
if they were provided and the centroids can be used as
the syndrome that characterizes that group of signatures.
Therefore clustering can be used to identify recurrent is-
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Figure 2: Clustering on the annotated data from ETB. The
signature method relying on attribution performs best and
is more stable across different number of clusters. X axis
denotes the number of clusters.

sues and to gather statistics regarding their frequency and
periodicity.

First, based on the results of the Subsection 4.1 we can
assert that the clustering as applied to the data in the RWA
is robust. As Figure 3 indicates, the entropy of the clusters
does not change significantly as we increase the number of
clusters, implying that the existing clusters are being sub-
divided rather than completely new ones created. Recall
that the entropy is an indication of the “purity” of the clus-
ter, namely of the elements in the cluster what percentage
belong to the same annotation.

Second, we demonstrate that the clustering is meaning-
ful for the case of nine clusters. Table 4 shows the num-
ber of elements belonging to each annotation (compliance
or violation) in each cluster. Note that for most of the
clusters, comprising of 90% of the 5 minute epochs in a
trace collected over a month, the vast majority of elements
in each cluster correspond to one annotation. In addition
these clusters are different from one another. Figure 7 de-
picts the cluster centroids (with a subset of the metrics)
for four of the cluster from Table 4: cluster 4 and 7, that
contained only compliance signatures and cluster 1 and 3,
that contained mostly violation signatures. Note that the
compliance centroids deem most metrics as not attributed
with a violation state (values -1 for metrics), while the vi-
olation centroids deemed some of the metrics as attributed
with a violation state (value 1), and others as either ir-
relevant (value 0) or non-attributed. We also see the dif-
ference between the centroids of the “violation” clusters
(1 and 3) with respect to the metrics that are deemed at-
tributed. Cluster 1 deemed the Database tier CPU utiliza-
tion (DB1 cpubusy) as attributed but assigned a -1 value
for the application server CPU utilization (gbl cpu total
util). In contrast, the centroid of cluster 3 deemed the ap-
plication server CPU as attributed, together with the num-
ber of alive processes and active processes on the applica-
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Figure 3: Clustering of the data from RWA. Each graph
corresponds to a different server. The signatures relying
on information from metric attribution outperform those
using only raw values.

tion server. As discussed earlier, most members of cluster
3 were labeled as the IDC problem, which had the symp-
tom of high application server CPU utilization and high
number of alive and active processes. These differences
point out to the symptoms of the members in each cluster
and define the syndrome of a group of signatures.

Given this clustering, identifying recurrent problem is
achieved by looking at the time of occurrence of the signa-
tures in each cluster. Figure 8 depicts the instances of clus-
ter 1, 2 and 3 overlaid in time on the performance indicator
graph. Cluster 3 is recurrent, and as mentioned earlier, we
verified with the IT operators that the periods defined by
“Cluster 3” coincided with the manifestation of the IDC
problem according to their records. Thus, had they had
this tool, they could have easily identified that problem as
a recurring one since it presented the same symptoms as
provided by the signatures. In addition, the clustering dis-
covered another undiagnosed recurring problem (Cluster
1), with the symptom of higher Database CPU utilization
(average of approx. 60% compared to approx. 20% in
most other times), while at the same time all application
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Figure 4: Using data from ETB we see that preci-
sion/recall behavior is closest to ideal when metric attri-
bution is used. A method’s performance is directly pro-
portional to the area under the curve.
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Figure 5: Temporal location of the instances of the IDC
problem on one of the Americas machines, overlaid on
the reference metric.

server utilization metrics were not attributed, and were in
fact normal. This problem remains undiagnosed to this
date, and did not appear again in the following months,
however, if it appears again, these past instances would be
retrieved and perhaps help prioritize finding a solution or
the root cause of the problem.

4.3 Claim 3: Leveraging Signatures Across
Sites

In this section we provide evidence that the signatures col-
lected at various sites and systems can be leveraged dur-
ing the diagnosis of performance problems. In particu-
lar, we show that diagnosis of a performance problem can
be aided by querying for similar (or dissimilar) signatures
collected at different sites or machines.
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Figure 6: Precision-recall graph for retrieval of the signa-
tures of the IDC issue in the web-service production envi-
ronment. Methods based on metric attribution outperform
the one relying on raw values significantly.

In the process of diagnosing the IDC problem, which
was observed on the Americas site, the debugging team in-
vestigated whether the same problem occurred in the Asia-
Pacific region as well. In particular, they hypothesized
that it did occur during a failover period on December 18,
2004, in which the transactions from the Americas cluster
were being sent to the systems hosting the FT in Asia-
Pacific(AP). A high percentage of the transactions were
violating their SLOs on one of the AP cluster machines
during the first 100 minutes of the failover period. The
debugging team suspected it was the same IDC problem,
and annotated it as such. Our signature database included
signatures on traces collected on that day. We then per-
formed the following query: are the signatures annotated
as the IDC problem in the Americas region similar to the
signatures collected from the AP region? In particular, are
those signatures collected during the failover similar to the
IDC signatures?

As Figure 9 shows, the result of the query was that the
signatures of the AP failover period are very different from
the signatures of the IDC problem. Key metrics that were
highly attributed in one were not attributed in the other. Of
the metrics that were attributed in both, only transaction
volume (tt count) was similar in its attribution signal for
the signatures from the two sites.

Upon close inspection of the attributed metrics from one
of the AP machines and the transaction mix on that ma-
chine, we quickly arrived at a different diagnostic conclu-
sion for the AP problem. Due to failover from the Amer-
icas system, AP1 was not only experiencing higher trans-
action volumes (see Figure 10), but also seeing a type of
transaction (call it the XYZ transaction) that it normally
does not see. The SQL statements associated with these
unusual transactions were not prepared or cached on the
AP machines, leading to more database overhead (Fig-
ure 12, higher response times, and ultimately SLO viola-
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Figure 7: Comparison of the centroid values for four clus-
ters (clusters 1, 3, 4 and 7 from Table 4), two containing
mostly compliance signatures (clusters 4 and 7) and two
containing mostly violation signatures (clusters 1 and 3).
Cluster 3 contained mostly signatures of the IDC prob-
lem. Note the difference between cluster 1 and cluster 3
in terms of metrics that are attributed and those not at-
tributed.

tion. This diagnosis was accepted by the diagnostics team;
the repair consists of priming the database and middle-
ware caches for the new transaction type before a planned
failover. As a result of this experience, we were able to
replace the false annotation originally provided for that
trace data with a new and correct annotation explaining
the problem and describing the required repair.

5 Related Work

The use of search and retrieval to find similar instances
and experiences of faults and performance problems is not
new. It is common practice for system operators to use
Web search engines to search for the text of error mes-
sages or console messages as part of their debugging, but
such methods are ad-hoc and imprecise. The work in [15]
argues for a machine-readable compact representation of
system state in an attempt, among other things, to formal-
ize the recording of instances and that search. Yet to the
best of our knowledge our work is the first to propose a
concrete technique for constructing the appropriate repre-
sentation and evaluating its efficacy.

While others have attempted to use low-level metrics to
characterize high-level system behavior, we believe that
we are the first to propose an automatic method for gener-
ating a compact, indexable representation of system state
that facilitates syndrome identification and incident clus-
tering. This section surveys recent research on related
computer performance diagnosis problems and reviews
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Figure 10: Average response time
during the AP1 failover period.

Figure 11: Throughput for the XYZ
Transaction during the AP1 failover
period. XYZ transactions are usu-
ally never seen in AP.

Figure 12: CPU utilization on the
DB server was unusually high at
the beginning of the failover period.
Once the caches are warmed, CPU
utilization returns to 20% or lower.
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applications of signatures to diagnostic problems in other
domains.

Aguilera et al. describe two algorithms for isolating
performance bottlenecks in distributed systems of opaque
software components [1]. Their “convolution” algorithm
employs statistical signal-processing techniques to infer
causal message paths that transactions follow among com-
ponents, which are not assumed to communicate via
RPC-like request/reply pairs. At the opposite extreme
of this knowledge-lean approach, Magpie characterizes
transaction resource footprints in fine detail but requires
that application logic be meticulously encoded in “event
schema” [2]. Cohenet al. employ statistical pattern clas-
sification techniques to identify system utilization metrics
that correlate with performance [5].
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application server.

Our research differs from these projects in that it is
aimed at aiding root cause diagnosis by finding similar
problems, rather than bottleneck detection or workload
modelling. While our approach does not determine the
root cause, finding a previously solved (annotated) prob-
lem may provide root cause (or repair action) when the
retrieval is accurate. Like Aguileraet al.and unlike Mag-
pie, we assume little knowledge of application structure or
logic and we rely heavily on statistical methods. Like Co-
henet al.we find that pattern-classification techniques are
useful for identifying a small subset of system measure-
ments that are relevant to performance. To us, however,
this subset is useful not for its own sake but rather for con-
structing signatures. For brevity, in this section we do not
discuss prior work already summarized in the above pa-
pers’ excellent literature reviews.

Faults in distributed systems, as opposed to perfor-
mance problems, are the subject of a large literature.
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For communications networks, whose components have
highly constrained and well specified behavior, a wide
range of fault localization techniques have been ex-
plored [16]. Yeminiet al. describe anevent correlation
(root cause determination) procedure that relies on an ex-
tensive library describing each system component’s possi-
ble faults and the consequences of each fault [21]. These
detailed component descriptions are compiled into acode-
bookthat reduces root cause analysis to a simple and effi-
cient task of decoding observed symptoms into the faults
that caused them. This approach has been commercial-
ized for communications systems [17] but is inappropriate
for arbitrary distributed software because it is infeasible
to enumerate the faults and symptoms of arbitrary com-
puter programs. In addition, this approach has no learning
or adaptation aspects, which our probabilistic models pro-
vide.

The Pinpoint system of Chenet al. analyzes run-time
execution paths of complex distributed applications to au-
tomatically detect failures by identifying statisticallyab-
normal paths; faulty paths can then aid a human analyst in
diagnosing the underlying cause [4]. Kiciman & Fox de-
scribe in greater detail the use of probabilistic context-free
grammars to detect anomalous paths in Pinpoint [10]. Our
approach shares with Pinpoint the use of statistical tech-
niques, but the instrumentation we require is more readily
available and we seek to diagnose performance problems
rather than faults.

Jain describes a traditional performance debugging
technique to generatevisual signatures of performance
problems [8]. Popular in the 1970s, “Kiviat graphs” dis-
play a handful of utilization metrics in such a way that
resource bottlenecks and imbalances assume a distinctive
appearance. Like our signatures, Kiviat graphs of different
systems (or of different conditions on a single system) in-
vite comparison and facilitate similarity matching. How-
ever our signatures differ in several ways from this classic
technique: signatures are intended forautomatedindex-
ing, retrieval, and similarity measurement; they do not rely
on human visual inspection; they scale to dozens or hun-
dreds of metrics; and they incorporate application-level
performance measures in addition to utilization metrics.

Signatures have been used extensively in virus scan-
ning and intrusion detection [12]. Statistical techniques
are often employed to flaganomalousactivity automati-
cally, but signatures ofmaliciousbehavior are almost al-
ways defined manually. Kephartet al.describe a statistical
method for automatically extracting virus signatures for a
commercial detection product [9].

Redstoneet al. advocate automating the diagnosis of
user-visible bugs by leveraging the efforts of troubleshoot-
ers worldwide [15]. These authors note that such problems
have often already been diagnosed and documented, e.g.,
in newsgroups and vendor bug databases. The real prob-
lem is finding the right diagnosis byindexinginto a vast
disorganized knowledge base. Signatures can help us to
realize the vision that Redstoneet al.sketch.

Modern systems software, middleware, and styles of
application architecture bring obvious benefits but entail
substantial costs. Ours is one of several research attempts
to preserve the benefits of modern architectural styles
while mitigating their problems. We briefly survey three
such problems and corresponding research toward solu-
tions.

Layers of modular re-usable components interacting
through narrow interfaces allow us to divide and conquer
increasingly complex problems at low cost. However they
also conceal performance-critical information about each
component from its neighbors. For example, conventional
operating systems offer strong inter-process fault isolation
but suffer side effects including redundant data buffering
and copying. The IO-Lite buffering/caching subsystem re-
tains fault isolation while eliminating redundancy [13].

Resource virtualization permits application developers
to ignore congestion and scarcity, which they often do to
the detriment of performance. The SEDA framework en-
courages application designers to explicitly address over-
load and resource scarcity while retaining many of the
benefits of virtualization [19].

Finally, decentralized management and geographic dis-
tribution allow different organizations to cooperatively
serve a global user base, but these trends also diffuse the
knowledge required for performance debugging. Aguil-
eraet al.and Cohenet al.confront theopacityof complex
modern applications by illuminating performance bottle-
necks and correlates of performance in unmodified dis-
tributed applications [1, 5]. Our signature-based syndrome
identification methods reduce redundant diagnostic effort
across time, geography, and organizational boundaries.

6 Discussion

6.1 On Root Cause Analysis and Diagnosis

The statistical and pattern recognition techniques under-
lying the automated extraction of the signatures capture
correlation, not necessarily causation. Indeed, as is well
known in the statistics and other communities, the abil-
ity to infer causation from pure observation is limited and
in most cases impossible [14]. By pure observation we
mean lack of direct intervention into the system or addi-
tional information, coming from human experts regarding
the causal relations and paths in the system. In some in-
stances, time information and information about the se-
quence of events can be used as heuristics to find causal
connections. This has been attempted in many domains
including this one, most notably in [1]. We leave as fu-
ture work the inclusion of this kind of information into
our approach and the exploration of its utility, although
we remark that there is nothing in principle that prevents
us from considering “sequences” of signatures or adding
time information (including precedence information) into
the creation of the signatures and the subsequent analysis.
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It follows from this discussion that we cannot claim (nor
have we ever) that the approach advocated in this paper
yields a root cause of the problem. Indeed, even with hu-
man expert knowledge, root cause analysis is far from easy
(recall the example of Section 3.3). Nevertheless, we pos-
tulate that offering the capabilities of systematic similarity
search and clustering of correlated metrics helps in nar-
rowing down the possible causes and is therefore useful
in the diagnosis process. In addition, it may not be nec-
essary to reach a root cause to produce a repair. As diffi-
cult as root cause analysis has proven to be over the years,
perhaps a more pragmatic approach would be to automat-
ically map the evidence for the faults and metric state to a
finite set of possible repair actions.

6.2 On Annotations, the Real World, and
Clustering

For the scenarios we target—assistance in narrowing
down the likely causes of performance/availability prob-
lems and the ability to re-use diagnostic efforts across
sites as well as across time—we must assume that we start
from un-annotated data logs. Our methodology relies on
the pragmatic assumption that if our clusters have low en-
tropy, the clusters have done a good job of grouping what
would likely be signatures with the same annotation if the
data were annotated; this makes clustering useful even in
the absence of annotations. This assumption is supported
by our results demonstrating that the method we use for
signature generation results in both high-quality clustering
and excellent precision-recall behavior when we do have
annotations. In fact, the clustering was able to recognize
75% of the IDC cases as belonging to the same cluster.

Similarly, our evaluation of how well our technique can
identify recurring problems is really just checking whether
we would identify two data points as belonging to the
same cluster if they were collected at different points in
time—again, whether the clustering and signature-based
query results support each other. When they do, we can
tentatively conclude that the size of a particular cluster re-
flects how many violations can be attributed to the “syn-
drome” that cluster represents; when a human operator in-
vestigates further, characterizes and names the syndrome,
and describes remediation procedures, these can be per-
manently stored in the database.

Still, it is a fact of life in the IT trenches that annota-
tions will be scarce and also imperfect. Part of the reason
for imperfect annotations on real data results from the real-
ity that the administration of different subsystems or tiers
of an application may be delegated to different individu-
als distributed across the organization, as we experienced
when investigating the problem and resolution described
in Subsection 4.3. Our experience with other companies
running multi-tier applications confirms that there is of-
ten no single administrator responsible for understanding
the end-to-end paths through the application. One result
of this is a frequent lack of clear agreement on what the

true cause of a problem is or was: forensic data may be
discarded before it’s needed, and each operator is typi-
cally focused on either debugging or exonerating her/his
piece of the system. So un-annotated or imperfectly an-
notated data should be considered realistic. We hope that
the availability of a systematic way to exploit annotations,
as proposed in this paper, will encourage a change in best
practices. Our acceptance of good clustering and the cen-
troids as a “proxy” for annotated data represents a practi-
cal approach when un-annotated data is all that we have at
our disposal.

Of course much more monitoring and experience with
real data is needed to validate our approach over the long
run. The contribution of our present work is proposing and
implementing specific methods and illustrating the value
of indexing, similarity search, and clustering for diagnosis
on real data.

6.3 Performance Impact of Our Approach

There are five points where our approach adds compu-
tation cost or other overhead that may impact perfor-
mance considerations: overhead of collecting data, con-
struction of TAN models for metric attribution [5], sig-
nature computation, clustering, and retrieval. Our system
data is collected by a commercial tool that is widely de-
ployed in industry; the tool is designed to minimize per-
formance impact on the observed system, and at any rate
the widespread use of such tools represents a sunk cost.
Updated system data is coalesced and reported periodi-
cally, generally in 1 or 5 minute epochs. Building and
maintaining an ensemble of TAN models takes 5–10 sec-
onds with our code, so it is practical to apply the ensemble
algorithm to system data in real time. In our prototype im-
plementation in Matlab, given an ensemble with approxi-
mately 41-67 models (generated using one month of sys-
tem data), it takes about 200ms to compute a signature for
one epoch. Using thek-medians algorithm (withk=10)
to cluster 7507 signatures (about one month when using
5-minute epochs) takes less than 10 seconds. Finally, re-
trieving the top 100 matching signatures from a database
of 7700 signatures takes less than one second. We con-
clude that signature generation can proceed in real time,
and analysis with clustering or retrieval is fast enough to
be done at will.

7 Conclusions

A particularly relevant result we showed is that simply
recording the values of raw system metrics does not pro-
vide an effective way to index and retrieve syndrome data:
a more sophisticated way of generating “signatures” is re-
quired. We showed the efficacy of one particular way
of doing this using previous work on using ensembles of
Bayesian networks to determine which low-level metrics
are “implicated” in particular situations and using a list of
those metrics (but not their values) as the signature. We
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showed that clustering and retrieval using signatures al-
lows diagnosticians to leverage the results of past work
and identify similar or recurring problems, even when
no problem annotations or application-specific knowledge
are available. Indeed, even our prototype implementation,
under these circumstances and working with un-annotated
data, was helpful in correcting a misdiagnosis as well as
correctly classifying a recurrent problem, procedures that
required the exchange of 80 pages of notes among admin-
istrators to perform manually.

However, in the large, we are not necessarily advocat-
ing for our particular choices of signature construction,
clustering, similarity metrics, etc. Indeed, we believe that
there is room for improvement and further study in any of
these issues. Rather, we are advocating the idea that being
able to automatically distill the essence of an observed un-
desirable behavior,and indexa machine-manipulable rep-
resentation of that essence for troubleshooting, is a logical
next step for systems research on automation that will fa-
cilitate scaling and increase the availability of our systems.
In addition, it will enable a systematic way of capturing
knowledge and expertise from operators (through annota-
tions of diagnoses and repair actions) that can be leveraged
by other operators across geography and across time.
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