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Abstract
Brewer and Kuszmaul [BK94] demonstrated how barriers and

traffic interleaving can alleviate the problem of bulk-transfer perfor-
mance degradation on the Thinking Machines CM-5, by exploiting
the observation that 1-on-1 communication avoids network conges-
tion. We apply and extend these techniques on the Intel Paragon
and MIT Alewife machines. Because these machines lack the CM-
5’s fast hardware support for barriers, we introduce a token-passing
scheme that avoids barriers while maintaining 1-on-1 communi-
cation. We also introduce a new algorithm,distributed dynamic
scheduling, that brings Brewer and Kuszmaul’s observations to bear
on irregular traffic patterns by massaging traffic into a sequence of
near-permutations at runtime, without requiring any preprocessing
or global state. The measured performance of our algorithm ex-
ceeds that of traffic interleaving (the most effective technique pro-
posed in [BK94]) on all three platforms, and is comparable tothe
performance of static scheduling, which requires preprocessing and
global state [RSA].

1 Introduction
Parallel scientific applications running on massively par-

allel processors (MPPs) commonly exhibit one of a small
set of communication patterns [SWG92]. Brewer and Kusz-
maul found in a recent study [BK94] that for large problem
sizes, the performance of these codes was limited by the
speed of the interprocessor bulk-transfer facilities available
on the Thinking Machines CM-5. They identify the funda-
mental causes of systematic degradation in bulk-transfer per-
formance on the CM-5 and offer a communication library
called Strata [BB94] that implements a set of techniques to
improve it, including barrier synchronization and packet in-
terleaving. We wanted to evaluate the effectiveness of these
techniques on other MPPs, and to extend them in order to
address two issues not covered by [BK94]:

• The CM-5’s hardware support for fast barriers plays a
prominent role in Strata; we wanted to explore the im-
plications of synthesizing software barriers, which are
more common on most existing MPPs. Compared to
hardware barriers, software barriers suffer higher la-
tency and scale less effectively.

• The most effective Strata techniques apply primarily to
the all-pairs permutation communication pattern. We
wanted to extend the Strata ideas to a wider range of
communication patterns.

In characterizing the communication behavior of SPMD
“owner-computes” scientific codes, we distinguishpermuta-
tions, in which each processor is sending data to exactly one

other processor, fromirregular communication, in which the
communication patterns are not known until runtime and are
not necessarily 1-on-1.

We now review the optimization techniques introduced
by Brewer and Kuszmaul and discuss the implementation
of these techniques on the Paragon and Alewife machines.
In section 3 we present and evaluate a newtoken passing
technique that overcomes some of the limitations in earlier
techniques. In section 4 we present adistributed dynamic
scheduling algorithm, which enables us to apply Brewer
and Kuszmaul’s techniques to irregular traffic by building
“near permutations” from irregular traffic at run time with-
out global state or preprocessing.

1.1 The Receiver Bottleneck

Brewer and Kuszmaul identified a sequence of events, re-
sulting from some fundamental properties of MPP communi-
cation facilities, that can produce systematic degradation of
communication performance. The root of the problem is that
on virtually all MPPs, the primitive for injecting messages
into the network (sending) is cheaper than the primitive for
extracting messages from the network (receiving). Reasons
for the asymmetry include interrupt-driven reception [WD]
(as on the MIT Alewife [ACD+91, KA93]), network-polling
primitives comparable in latency to uncached memory reads,
and housekeeping tasks such as buffer management and re-
ordering that are not usually present at the sender [KC93].
Since a receiver cannot drain the network as fast as a sender
can inject messages, network congestion occurs during the
communication phase of a parallel program. A technique
calledbandwidth matching [BK94], which artificially limits
the sender’s injection rate to the receiver’s extraction rate,
has been demonstrated to alleviate this congestion. How-
ever, bandwidth matching does not address the more insid-
ious problem of many-on-one sending.

When there is no coordinated communication behavior
during the communication phase, as is often the case, a re-
ceiver that could not keep up with a single sender may find
itself handling incoming traffic from multiple senders. The
inevitable congestion eventually causes senders to stall on
injection. But the receiver must continue to drain the net-
work in order to prevent deadlock [KA93], leaving it fewer
resources for sending its outgoing messages, which in turn
leaves the potential recipientsmore resources for injecting
additional messages. The result is systematic degradationof
bulk-transfer performance.
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Figure 1: Strata techniques on the 64-node CM-5.
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Figure 2: Strata techniques on the 8-node Paragon.

The cyclic-shift communication pattern exhibits patholog-
ical behavior as a result of this self-reinforcing effect [BK94].
Since a parallel program is as slow as the slowest processor,
the receivers that fall behind limit the performance of the pro-
gram.

2 Strata on Three Machines

In this section we present the results of implementing and
measuring the performance of the Strata techniques evalu-
ated in [BK94] on a 64-node Thinking Machines CM-5, a
4-node MIT Alewife machine, and an 8-node Intel Paragon.
Contrary to intuition, this sentence must be included in order
to coerce LATEXto typeset the paper within the 7-page limit
imposed by IPPS.

A trio of graphs, figures 1 through 3, presents our mea-
sured results of two Strata techniques.

• The CSHIFT curve shows the effective bandwidth
achieved by uncoordinated cyclic-shift permutation
traffic as a function of block size; this corresponds to
a naively coded application exhibiting regular all-pairs
communication.

• The CSHIFT+Barriers curve shows the improvement
in performance achieved by separating the permuta-
tions within each round with barriers (hardware barri-
ers on the CM-5, software barriers on the other plat-
forms), which is the most effective technique proposed
by Brewer and Kuszmaul.

• The Random curve shows the effective bandwidth
achieved by a random traffic pattern, representative
of irregular communication patterns. Our benchmark
generates this traffic by having each source randomly
choose destinations.

• Finally, the Random Interleaved curve shows the im-
provement on random traffic by interleaving packets
destined for different receivers rather than sending each
large block to its receiver serially; interleaving was the
best technique demonstrated in [BK94] for dealing with
irregular traffic.

2.1 Discussion
We include our numbers for the CM-5 for the sake of com-

pleteness, although they essentially agree with the graphs
from [BK94]. The legend on the Alewife graph includes
a note concerning the injection (fragmentation) size used
for each algorithm. As discussed in [Aga91], large packet
sizes lead to poor flow through the network and erratic ar-
rival times. The different algorithms had different “breaking
points” at which the large packet size caused wild fluctua-
tions in performance. For each curve, we chose an injection
size below this threshold.

The independent axis of each graph shows the block size
of data being sent. Approximately the same overall amount
of data was transferred at each point on the graph; this took
more rounds for small block sizes than for larger sizes. The
total amount of data sent varied from platform to platform,
but was held constant across all the experiments on each
platform. The dependent axis shows the averageachieved
bandwidth, as opposed to each platform’s maximum point-
to-point bandwidth. We believe achievable bandwidth is a
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Figure 3: Strata techniques on the 4-node Alewife.



more useful metric, because it can be used to compute a lower
bound on the running time of a SPMD problem more directly
than can point-to-point bandwidth.

Since the Paragon has only 8 nodes, the best performance
figures were obtained by using a large data fragmentation
size. In systems with more nodes there is a definite win in
using smaller injection sizes [Aga91] to improve message
flow through routers and links in the network. In the 8-
node Paragon there is little incentive to do this, since there
are few routers that a given message will pass through, and
the startup cost of the DMA transfer engine is very high. The
8K byte injection size maximizes the achieved bandwidth,
but gives little advantage to interleaving.

Permutations with barriers produces dramatic improve-
ment on all machines for sufficiently large block sizes, par-
ticularly on on the CM-5 with its fast hardware barriers. On
the Paragon and Alewife, software-synthesized tree barriers
are still a win for all but the smallest block sizes.

3 Tokens
Unlike the CM-5, most MPPs do not offer hardware bar-

rier support. One software alternative is a tree barrier, whose
latency grows logarithmically with the number of nodes and
whose per-node overhead is proportional to the tree’s arity.

Besides the latency and overhead, though, an inherent dis-
advantage of using barriers to enforce 1-on-1 communication
is that any given node must wait at the barrier until all nodes
arrive, even if its communication peer for the next round has
already reached the barrier.

3.1 Tokens
To address this problem, we implemented an alternate

scheme for enforcing 1-on-1 communication based on token
passing. A token is associated with each node in the system.
The holder of nodei’s token has the exclusive right to send
to nodei. Since the communication is being structured as a
sequence of permutations, the movement of the token among
the senders can easily be determined in advance, and each
sender passes the receiver token to the next sender when it
finishes sending.

For our experiments we implemented a sequence of cyclic
shifts as the permutations. At rounda each nodei sends to
node(i + a)%N , whereN is the number of nodes. At the
end of a round, each nodei passes the token it is holding to
node(i − 1)%N , i.e. the node that will be sending to the
same destination in the following round.

Figure 4 illustrates the token passing mechanism in ac-
tion. Four nodes of an MPP are represented by circles, the su-
perscripted numbers represent the tokens held by each node,
solid arrows represent data transfer and dashed arrows repre-
sent token passing messages. Node 2 finishes sending early.
As soon as it receives 4’s token (from 3) it can begin sending
to 4. Eventually all nodes advance to the next round, but if
we had used barriers, 2 would not have been able to move
ahead until the last send of the round was complete. Token
passing is effected using active messages [vECGS92], a low
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Figure 4: The token mechanism with cyclic shift permuta-
tions.
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Figure 5: Tokens and barriers compared on the 64-node CM-
5.

latency, low overhead communications layer supported on all
three machines we used.

3.2 Discussion of Tokens
Figures 5 through 7 illustrate the performance of tokens

relative to permutations separated by barriers. Note that on
the Alewife and Paragon, tokens always perform better than
software barriers, for the reasons outlined above. However,
on the CM-5, the hardware barriers provide better perfor-
mance for bulk-transfer sizes up to about 1.5Kbytes. For
larger transfers, the relative overhead of both barriers and
tokens approaches zero, and we start to see the benefit of
relaxing the condition that all nodes wait at the barrier.

As described previously, the overhead and latency of soft-
ware barriers grows as nodes are added. The small number
of nodes in the Alewife and Paragon systems we used makes
the barrier cost comparable to the token passing cost, but with
more nodes one would expect tokens to outperform barriers
by a wider margin.
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Figure 6: Tokens and barriers compared on the 8-node
Paragon.
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Figure 7: Tokens and barriers compared on the 4-node
Alewife.
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Figure 8: Receiver-Queue token performance compared to
other permutation methods on the 8-node Paragon.

We experimented with and discarded an alternative
scheme which we called Receive Queue tokens (RQ tokens).
In this scheme each receiver explicitly manages its own to-
ken by keeping a queue of token requests. However, without
barriers to enforce lock-step advancement, nodes drift outof
sync with each other, causing multiple senders queue up for
a single token. This means that even if they have other data
available for an idle receiver, they cannot send it. As a result,
the network becomes underutilized and overall performance
is disappointing. Figure 8 compares the performance of this
scheme with the other schemes described so far, in a simple
experiment on the Intel Paragon.

4 Dynamic Scheduling
4.1 Motivation

The results from [BK94] and those presented earlier in
this paper confirm that using permutations and barriers or to-
kens is an effective method of speeding up bulk-transfer. Our
second goal was to bring the advantages of 1-on-1 communi-
cation to bear on irregular traffic.

RQ tokens suffer from head of line blocking, demonstrat-
ing that 1-on-1 communication is not enough to ensure good
performance. We must also ensure that there are few idle
senders and receivers, since network bandwidth is wasted
while they are idle. The goal of dynamic scheduling is to
achieve 1-on-1 communication with few idle senders or re-
ceivers.

4.2 Parallel Iterative Matching
Dynamic scheduling is inspired by the parallel iterative

matching algorithm [AOST93] implemented for crossbar
switches of the AN2 ATM network. During each schedul-
ing round, each input holds a list of packets each destined
for some output. The PIM algorithm finds a 1-on-1 pairing
between inputs and outputs that leaves few idle ports.

PIM works by liberal use of messages that travel over a
simple hardware signalling network in the ATM switch. In-
puts broadcast in parallel to all outputs for which they have



traffic, and each output randomly selects one of the request-
ing inputs. The selected input chooses an output from among
all the acceptances it receives, and this input–output pairdoes
not participate in future rounds of the protocol. The AN2
hardware timings are such that four iterations of the proto-
col can “fit” into a communication round; any senders or
receivers unpaired after four iterations simply wait untilthe
next communication phase.

A direct adaptation of PIM fails on an MPP for a num-
ber of reasons. The dedicated hardware signalling network
found inside the AN2 is generally not available in MPPs. All
of the pairing communication must be performed using ac-
tive messages. The cost of injecting large numbers of such
messages to achieve the broadcast from senders to receivers
is prohibitive, and outweighs the benefit of the resulting 1-
on-1 pairings.

Another problem is that PIM proceeds through a series
of synchronized iterations. Outputs must be able to identify
when all signals from inputs have arrived before they selecta
candidate input, and inputs must be able to identify when all
acceptance messages have arrived so they can select an out-
put to form a pairing. In a message-passing MPP, this syn-
chronization carries extra expense in the form of additional
synchronizing messages or global barriers between each of
the iterations of the pairing protocol.

4.3 Dynamic Scheduling Implementation
Instead of statistically matching senders and receivers, we

construct pairings between senders and receivers by means
of a booking transaction. A booking from nodea to nodeb

for (future) roundr givesa the exclusive right to send data to
b in roundr.

The DS algorithm is illustrated by figure 9. Solid arrows
are data transfer, dashed arrows are booking request/reply
messages. At the beginning of the communication phase,
each sender has a list of receivers to which it must send data
(the “S” lists in the figure). Within each round of the DS
protocol, a sender that still has data to send, and is not com-
pletely booked for the next few rounds, requests a booking
from one of its receivers for a future round. Each receiver
maintains a list indicating which senders have been granted
the right to send in each future round (the “R” list). This
list is compared with the requesting sender’s list (transmitted
as a bitmap with 1’s indicating free rounds) to determine the
earliest future round for which a booking can be granted. If
there are no mutually-free rounds within thelookahead win-
dow used by the receiver, the booking may be denied. In the
figure, node 2 receives a booking request from node 3, and
books node 3 into the next round, which is shown as free
in both node 2’s “R” list and node 3’s transmitted bitmap of
available rounds. Booking transactions are handled using ac-
tive messages.

Because bookings carry a bitmap of future available
rounds, a sender may only have a single outstanding booking
request message at any time. After the current round’s trans-
fers are complete and the barrier passes, the lists are shifted
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Figure 9: The dynamic scheduling mechanism

over and all the booked communications for the new round
begin.

Rounds of the protocol are separated by barriers in or-
der to give every node in the system a consistent notion of
time, so they can negotiate about future rounds. Schedul-
ing proceeds concurrently with data transfer; when a sender’s
lookahead window of upcoming rounds is fully booked, that
sender temporarily stops requesting bookings, in order to al-
low other senders to make successful bookings.

Because DS avoids broadcasts, it uses far fewer messages
per successful pairing than PIM. The observed rate of denials
is less than 1 percent per booking request message sent, i.e.
99 percent of the time, the cost of attempting the booking
will be amortized over a real data transfer resulting from the
booking grant.

4.4 Performance
Figures 10 and 11 illustrate the performance of DS on the

Paragon and CM-5. We were unable to take measurements
on the Alewife machine, partially due to the instability of
its hardware and kernel. In addition, porting of DS to the
Alewife was complicated by that machine’s interrupt driven
message reception and different atomicity model (both the
Paragon, on which the DS code was originally developed,
and the CM-5, to which it was easily ported, use a polling
model of message reception).

These graphs should be interpreted as follows. The ran-
dom interleaving curve represents the best method from
[BK94] for dealing with irregular traffic; DS must perform
at least this well to justify its additional complexity. The
CSHIFT+barriers curve represents an upper bound on the
performance that DS could ever achieve; it corresponds to
the case where no denials occur, there is no booking over-
head, and a full set of 1-to-1 pairings is produced. The graphs
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Figure 10: Dynamic scheduling on the 64-node CM-5.
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Figure 11: Dynamic scheduling on the 8-node Paragon.

clearly show that for sufficiently large block sizes the extra
efficiency afforded by near-permutation traffic outweighs the
overhead of performing bookings.

The next two graphs show how effective dynamic schedul-
ing is at keeping all nodes highly utilized. Figure 12 shows
the behavior of DS when the traffic is all-pairs communica-
tion (sequence of permutations). DS is able to dynamically
pair senders and receivers with high network utilization. Fig-
ure 13 demonstrates the effectiveness of DS on a random traf-
fic pattern. In this case nodes send data to randomly selected
destinations. DS is able to achieve very high network uti-
lization (few idle nodes) while preserving 1-on-1 communi-
cation.

5 Summary & Implications
We have demonstrated that although barriers provide the

tightest synchronization and best performance for enforcing
1-on-1 communication, token passing works well for a large
range of data block sizes when fast barrier support is unavail-
able. We also showed that the effect of dynamic scheduling
is to “massage” the communication into a permutation pat-
tern at runtime, resulting in better performance for irregular
traffic than can be achieved by interleaving.
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5.1 Limitations and Future Work
One obvious extension to the dynamic scheduling algo-

rithm is to replace barriers with tokens, just as we did for the
[BK94] technique. Our experiments with using tokens ev-
ery round and barriers somewhat less frequently have shown
promise. The periodic barriers are used to prevent nodes
from drifting too far out of sync for booking purposes, while
tokens permit low-overhead enforcement of 1-on-1 commu-
nication.

We suspect that irregularly sized, irregularly distributed
traffic will benefit from dynamic scheduling, but experiments
on nonuniform data sizes have been inconclusive so far. The
essence of the technique we are exploring is to fragment the
irregular sized data into fixed sized chunks, one of which may
not be full, resulting in partial waste of allocated bandwidth
when sent. We are attempting to quantify the effect this will
have on the overall useful bandwith.

We performed some preliminary experiments in which we
co-optimized the bandwidth matching constant and the DMA
transfer size (Alewife) or network polling interval (CM-5).
Our experiments suggested that the interaction between these
parameters is analytically characterizable, but we cannotpro-
vide such characterization at this point.

The 4-node Alewife is too small to exhibit enough link
contention to stress the performance of the algorithms we
examined, but we were unable to run experiments on the 32-
node machine due to hardware and kernel instability.

We believe the communication patterns we synthesized
characterize observed SPMD behavior fairly [Sin93, Sal90,
SWG92].

5.2 Communication Library Support
We believe the communication phase of a scientific ap-

plication should enjoy the following support in an optimized
communication library:

foreach proc in (dests_this_round)
schedule(proc, BigDataChunk);

service_queue;

The schedule call may either perform an actual send, or
schedule a block for sending later.Service queue delivers
any remaining queued blocks, using either interleaving or dy-
namic scheduling, depending on the data size and machine.
Some MPPs, notably the Intel Paragon, feature a communi-
cation coprocessor, which we suspect can implement these
operations. In the research version of the Paragon kernel and
Active Message layer that we used [BCL+], this coproces-
sor acts as a latency engine, since it provides no services that
benefit our techniques.

5.3 Related Work: Static Scheduling
Wang, Rankaet al. [WLR93, WR94] construct near-

permutations in which sender–receiver lists are distributed to
all processors at the beginning of the communication phase.
All processors then execute a preprocessing step in parallel
that constructs the partial permutations. It is unclear whether

they use the Brewer and Kuszmaul techniques to enforce
1-on-1 communication; in [RSA], they cite [BK94], yet in
[RWF92] they seem to make a point of stating that they do
not use barriers during the communication phase.

We found their performance results difficult to interpret.
Since they assert that the computation and communication
overhead of determining the schedules can be amortized by
reusing the schedules, it was not clear whether this over-
head was included in their best-case measurements. In any
case, dynamic scheduling achieves performance comparable
to their static scheduling, and does not require any prepro-
cessing overhead or global knowledge. Because it imposes
fewer restrictions, dynamic scheduling may be applicable to
a larger set of applications, including those whose communi-
cation patterns can change from iteration to iteration.
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