
Stanford Interactive Workspaces: A Framework for Physical and
Graphical User Interface Prototyping

Jan Borchers, Meredith Ringel, Joshua Tyler, and Armando Fox
Computer Science Department, Stanford University

Overview
Most Smart Homes are created evolutionarily by adding more and more technologies to an
existing home, rather than being developed on a single occasion by building a new home from
scratch. This incremental addition of technology requires a highly flexible infrastructure to
accommodate both future extensions and legacy systems without requiring extensive rewiring of
hardware or extensive reconfiguration on the software level. Stanford’s iStuff (“Interactive
Stuff”) provides an example of a hardware interface abstraction technique that enables quick
customization and reconfiguration of Smart Home solutions. iStuff gains its power from its
combination with the Stanford Interactive Room Operating System (iROS), which creates a
flexible and robust software framework that allows custom and legacy applications to
communicate with each other and with user interface devices in a dynamically configurable way.

The Stanford Interactive Room (“iRoom”, see Figure 1), while not a residential environment, has
many characteristics of a Smart Home: a wide array of advanced user interface technologies,
abundant computation power, and infrastructure with which to coordinate the use of these
resources (for more information on the iRoom or the Interactive Workspaces project, please visit
http://iwork.stanford.edu). As a result, many aspects of the iRoom environment have strong
implications for, and can be intuitively translated to, Smart Homes. In particular, the rapid and
fluid development of physical user interfaces using iStuff and the iROS, which has been
demonstrated in the iRoom, is an equally powerful concept for designing and living in Smart
Homes.

Before focusing on the details of iStuff, we describe the software infrastructure on which it is
based, and the considerations that went into designing that infrastructure.

Figure 1. The Stanford iRoom contains a wireless GyroMouse and keyboard (visible on the table), three
touch-sensitive SmartBOARDs and one non-touch-sensitive tabletop display, and a custom-built OpenGL
hi-res graphic mural. The room is networked using IEEE 802.11b wireless Ethernet. Except for the hi-res
mural and the tabletop, all hardware is off-the-shelf, all operating systems are unmodified Windows
(various flavors) or Linux, and all software we have written is user-level.

1 iROS: Application Coordination in Ubiquitous Computing Environments

1.1 Software Requirements for Rapid Integration and Evolution
The ability to continually integrate new technologies and to handle failures in a non-catastrophic
manner is be essential to Smart Homes and related ubiquitous computing environments. Our
experience working in the Stanford iRoom enables us to identify four important requirements for
a software infrastructure in a ubiquitous computing environment:
• Heterogeneity: The software infrastructure must accommodate a tremendous variety of

devices with widely ranging capabilities. This implies that it should be lightweight and make
few assumptions about client devices, so that the effort to “port” any necessary software
components to new devices will be small.

• Robustness: The software system as a whole must be robust against transient or partial
failures of particular components. Failures should not cascade, and failure or unexpected
behavior of one component should not be able to infect the rest of the working system.

• Evolvability: The application program interface (API) provided must be sufficiently flexible
to maintain forward and backward compatibility as technology evolves. For example, it
should be possible to integrate a new type of pointing device that provides higher resolution

or additional features not found in older devices, without breaking compatibility with those
older devices or existing applications.

• Compatibility: It should be easy to leverage legacy applications and technologies as building
blocks. For example, Web technologies have been used for user interface (UI) prototyping,
accessing remote applications, and bringing rich content to small devices; desktop
productivity applications such as Microsoft PowerPoint contain many elements of a “rich
content display server”; and so on. Furthermore, since technology in smart spaces tends to
accrete over time, today’s new hardware and software will rapidly become tomorrow’s legacy
hardware and software, so this problem will not go away.

Our prototype meta-operating system, iROS (Interactive Room Operating System), meets the
above criteria. We call it a meta-OS since it consists entirely of user-level code running on
unmodified commodity operating systems, connecting the various iRoom entities into a “system
of systems”. We discuss the main principles of iROS here to give the reader an understanding of
how it facilitates building new behaviors using iStuff.

1.2 iROS and Application Coordination
We will frame our discussion in the context of the Stanford iRoom, a prototype environment we
constructed that we believe is representative of an important class of ubiquitous computing
installations. The iRoom is intended to be a dedicated, technology-enhanced space where people
come together for collaborative problem solving (meetings, design reviews, brainstorming, etc.),
and applications we prototyped and deployed were driven by such scenarios.

The basis of iROS is application coordination. In the original formulation of Gelernter and
Carriero [2], coordination languages express the interaction between autonomous processes, and
computation languages express how calculations of those processes proceed. For example,
procedure calls are a special case in which the caller process suspends itself pending a response
from the callee. Gelertner and Carriero argue that computation and coordination are orthogonal
and that there are benefits to expressing coordination in a separate general-purpose coordination
language; our problem constraint of integrating existing diverse components across
heterogeneous platforms leads directly to separating computation (the existing applications
themselves) from coordination (how their behaviors can be linked).

In iROS, the coordination layer is called the Event Heap [6]. The name was chosen to reflect that
its functionality could be viewed as analogous to the traditional event queue in single-computer
operating systems. The Event Heap is an enhanced version of a tuplespace, one of the general-
purpose coordination languages identified by Gelernter and Carriero. A tuple is a collection of
ordered fields; a tuplespace is a “blackboard” visible to all participants in a particular scope (in
our case, all software entities in the iRoom), in which any entity can post a tuple and any entity
can retrieve or subscribe for notification of new tuples matching a wildcard-based matching
template. We have identified important advantages of this coordination approach over using
rendezvous and RMI (as Jini does) or simple client-server techniques (as has been done using
HTTP, Tcl/Tk [4], and other approaches); these advantages include improved robustness due to
decoupling of communicating entities, rapid integration of new platforms due to the extremely
lightweight client API (we support all major programming languages, including HTML, for
posting and retrieving tuples), and the ability to accommodate legacy applications (simple
“hooks” written in Visual Basic or Java can be used to connect existing productivity, Web, and
desktop applications to the iRoom). The only criterion for making a new device or application
“iRoom-aware” is its ability to post and/or subscribe to tuples in the Event Heap; since we can
create Web pages that do this, any device that enters the room running a Web browser is already
minimally iRoom-aware.

1.3 On-the-fly User Interface Generation in iROS
The Event Heap is the core of iROS, but we have also built other iROS services that provide
higher-level functionality. Most notably, the Interface Crafter (iCrafter) framework [9] can
generate UIs dynamically for virtually any iRoom entity, and on virtually any iRoom-aware
device. Although it extends previous work in several important ways, including integration of
service discovery with robustness and the ability to create UIs ranging from fully-custom to fully-
automatic, its main role in the present scenarios is to serve as an abstraction layer between
devices and UIs. Briefly, iCrafter is used as follows:
• Controllable entities “beacon” their presence by depositing self-expiring advertisements in

the Event Heap. These advertisements contain a description of the service’s controllable
behaviors (i.e., methods and their parameters) expressed in SDL, a simple XML-based
markup language we developed.

• A device capable of displaying a UI (web browser, handheld, etc.) can make a request for the
UI of a specific service, or can query the iCrafter’s Interface Manager (which tracks all
advertisements) to request a list of available services. This initial request is made via
whatever request-response technology is available on the client: visiting a well-known
dynamically generated Web page is one possibility.

• The desired UI is created by feeding the SDL contained in a recent service advertisement to
one or more interface generators. These may be local or remote (i.e. downloaded on demand
over the Web), and may be specialized per-service and/or per-device. The Interface Manager
determines the policy for selecting a generator. Part of this process includes integrating
contextual information from a separate context database relevant to each workspace, making
a “static” UI description portable across installations. For example, in a workspace such as
ours with three large wall-mounted displays, it is preferable for a UI to refer to these as “Left,
Center, Right” rather than using generic names such as “screen0, screen1, screen2” (see
Figure 2).

Note that in the last step the client device and the service do not need to establish a direct
connection (client-server style). This makes each robust to the failure of the other. They do not
even need to be able to name each other using lower-level names such as network addresses
because the tuple-matching mechanism can be based on application-level names or attributes of
the service (“retrieve advertisements for all devices of type ‘LightSwitch’”). The same service
can be controlled from a variety of different devices without knowing in advance what types of
devices are involved, since the same SDL description can be processed into quite different UIs by
different interface generators.

The ability to insulate the service and the UI from each other in these ways has been critical to the
rapid prototyping of new UI behaviors. iStuff builds on this ability: It uses this indirection to
enable rapid prototyping of physical UIs as well.

Figure 2. Screen/projector control UIs customized for various devices and incorporating
installation-specific information from the context database. (a) a fragment of a projector HTML
interface that can be rendered by any Web browser. This UI was generated by a projector-
specific HTML generator. The symbolic names “iRoom Server”, etc. are stored in the Context
Database and appear in the SDL markup as “machine0”, “machine1”, etc. (b) Room control
applet for the same room, generated by a Java Swing-UI generator. The geometry information
for drawing the widgets comes from the Context Database, so the generator itself is not
installation-specific. Users can drag and drop web pages onto the screen widgets to cause those
documents to appear on the corresponding room screens. (c) The same UI using different
geometry information (for a different room) from the context database. (d) A Palm UI rendered
in MoDAL [8] that lacks the drag-and-drop feature.

2 iStuff: Physical Devices for Ubiquitous Computing

2.1 iStuff Motivation and Definition
iStuff is a toolbox of wireless, platform-independent, physical user interface components
designed to leverage the iROS infrastructure (which allows our custom-designed physical devices
to send and receive arbitrary commands to and from other devices, machines, and applications in
the iRoom). The capability to connect a physical actuator to a software service “on the fly” has
appeal for the users of a ubiquitous computing environment such as a Smart Home. Residents
would have the ability to flexibly set up sensors and actuators in their home, and designers of
such homes would be able to prototype and test various configurations of their technology before
a final installation.

There are several characteristics that are crucial for our iStuff:

• Completely autonomous packaging, wireless connection to the rest of the room, and
battery-powered operation;

• Seamless integration of the devices with iROS as an existing, available, cross-platform
ubiquitous computing environment to let devices, machines, and services talk to each
other and pass information and control around;

• Easy configuration of mappings between devices and their application functionality, by
customizing application source code, or even just updating function mappings using a
web interface;

• Simple and affordable circuitry.

Various other research projects have looked at physical devices in the past; Ishii’s Tangible Bits
project [5] introduced the notion of bridging the world between bits and atoms in user interfaces,
and more recently, Greenberg’s Phidgets [3] represent an advanced and novel project in physical

widgets. Phidgets, however, are designed for use in isolation with a single computer, are
tethered, and do not work across multiple platforms.

2.2 Device Classification and Implementation

The range of potentially useful user interface components is almost unlimited, and the really
useful devices to go in a standard toolbox will only be identified over time. Ideas for such devices
can be categorized according to whether they are input or output devices, and according to the
amount of information they handle, as in the following examples:

• One-bit input devices, such as push buttons and toggle buttons, or binary sensors such as
light gates;

• Multiple-bit discrete input devices, such as rotary switches or digital joysticks as well as
packaged complex readers that deliver identification data as a result (for example,
barcode readers or fingerprint scanners);

• Near-continuous input devices, such as sliders, potentiometers, analog joysticks or
trackballs, and various sensors (light, heat, force, location, motion, acceleration…)

• Streaming input devices, such as microphones and small cameras;
• One-bit output devices, such as a control or status light, beepers/buzzers, solenoids and

power switchers;
• Multiple-bit discrete output devices, such as LED arrays or alphanumerical LCD

displays;
• Near-continuous output devices, such as servos, motors, dials, and dimmers;
• Streaming output devices, such as speakers and small screens.

Thus far, students in our lab have designed and built five types of prototype iStuff devices
spanning four of the above categories: iButtons, iSliders, iBuzzers, iLEDs, and iSpeakers (Figure
3). While our hardware designs have proven surprisingly powerful and proofs-of-concept, they
are simple enough to be reproduced easily (see sidebar).

Implementation Details [SIDEBAR]

Transmitting devices (buttons, sliders) contain a Ming TX-99 V3.0 300 MHz FM radio-
frequency (RF) transmitter and a Holtek HT-640 encoder to send 8 bits of data to a
receiver board, which contains a Ming RE-99 V3.0 RF receiver and a Holtek HT-648L
decoder. The receiver board sends its data to a PC using either the parallel or USB port,
and a listener program running on the PC then posts an appropriate tuple (based on the ID
received) to the iRoom’s Event Heap. Receiving devices (buzzers, LEDs) work in the
opposite manner—a listener program receives an event intended for the iStuff and sends
the target device ID through either the parallel or USB port to an RF transmitter. This
data is then received wirelessly by an RF receiver in the device, resulting in the desired
behavior. The iSpeaker has a different architecture, as the RF technology we employed is
not sufficient for handling streaming media. Instead, a listener program on the PC waits
for speaker-targeted events, and in response streams sound files over an FM transmitter,
which our iSpeaker (a small, portable FM radio) then broadcasts.

1 inch

Figure 3. The various types of iStuff created so far—buttons, potentiometers, speakers, and buzzers.

We have developed several successful setups using iStuff in the Stanford iRoom:

• New users coming into our iRoom are not familiar with the environment, and need an
“entry point” to learn about the room and its features. Using our iStuff configuration web
interface, we programmed one iButton to

o send events that turn on all the lights in the room
o switch on all SMARTBoards (large touch-sensitive displays) and our interactive

table display
o bring up a web-based introduction to the room on one SMARTBoard
o show an overview of document directories for the various user groups on a

second SMARTBoard, and
o open up our brainstorming and sketching application on the third SMARTBoard.

It is worth nothing that setting up this “iRoom Starter” took less than fifteen minutes of
configuration using the web interface.

• SMARTBoards provide only a rather inconvenient way to issue right-clicks when using
the touch-sensitive board for input—users have to press a right-click “mode key” on the
tray in front of the board to have their next touch at the board be interpreted as a right-
click. To study whether having the right-click modifier closer to the actual input location

at the board would make this interaction more fluid, we built a specialized iButton that
was shaped to fit inside a hollow pen prototype made from RenShape plastic by a Product
Design student in our model shop. When the button is pressed it sends an event to the
Event Heap that is then received by a listener application running on the computer
associated with the SMARTBoard. The listener then tells the SMARTBoard driver to
interpret the next tap as a right-click. Users can now simply press the button on the pen
and then tap to issue a right-click.

• We found our iSlider could conveniently control the paddles for our multi-screen version
of the classic video game Pong, as described below.

• The iSpeaker has been extended to provide verbal feedback for user actions (e.g., “Pong
game started”) by means of a text-to-speech program—applications simply send a
“SpeakText” event to the iSpeaker containing the ASCII text to be spoken.

• We are experimenting with our iLEDs and iBuzzers to provide feedback about the status
of devices in the room.

As discussed before, the Event Heap is a core component of the iRoom Operating System that
makes it possible to decouple sender and receiver from the contents of the message itself (Figure
4). This architecture allows great flexibility for the prototyping of interfaces—for instance, an
application can be controlled by either a traditional mouse, a graphical slider widget, or an iSlider
so long as each of those devices sends the event type (perhaps an event containing a new Y-
coordinate) for which the application is listening.

Figure 4. The overall system architecture for iStuff. In green are the actual physical devices, and in blue

are a couple of examples of applications using iStuff and the iROS Event Heap. An iStuff server translates
the wireless device transmissions into software events, which can be consumed by interested applications.
For example, when the potentiometer of the iSlider is moved, it sends a radio signal, which is received by

the server and turned into a SliderEvent. The event is posted to the Event Heap, and subsequently received
by the iPong application, which is listening for SliderEvents.

In our iRoom we have demonstrated the utility of the combination of Event Heap software with
iStuff hardware by developing iPong, a multi-machine version of the video game where players
control the vertical position of virtual paddles to make contact with a virtual bouncing ball. The
game was written to listen for Paddle Events, which contained information about the new position
of the target paddle. Any input method that can generate a Paddle Event can control the paddle
position. We have mapped the standard mouse, touch panel input, and an iSlider (a sliding-
potentiometer iStuff widget) to drive the paddle. To the application, the physical source of the
events is irrelevant. In this way, we have decoupled the link between hardware and software
components in a physical user interface.

Our iButtons are already reconfigurable dynamically via a web interface that lets users enter
arbitrary events to send when a specific button is pressed. We intend to provide this flexible
interactive mechanism for mapping applications and events for all iStuff, using the “on-the-fly”
service discovery tools of iROS (described in section 1.3). The result will be a general virtual
“Patch Panel” that allows even end-users to map events to services and to map conversions
between related event types. Thus, iStuff makers can send and receive their own types of events
(such as button events or slider events) without concern for the exact names of events desired by

end user applications, and application developers can send and receive their own types of events
(such as Paddle event) without prior knowledge of every possible type of device the user might
choose to interface with their application.

The iStuff/Event Heap combination has direct applications to the Smart Home that incrementally
acquires new technologies. When residents acquire a new device, or wish to reconfigure existing
devices, they can simply use a utility such as our “Patch Panel” to map the event type sent by the
new device to the event type expected by the target application.

2.3 Smart Home Applications
While our iStuff was originally designed with our iRoom (a space used for meetings and
brainstorming/design sessions) in mind, our technology and infrastructure could be useful in a
Smart Home environment. In particular, the ability to create task-oriented user interfaces—
interfaces reflecting the user’s task as opposed to the technical features of an appliance—makes
iStuff particularly compelling for Smart Home applications:

• Dynamic, task-based remote controls: Currently, when a user wants to watch a movie
on a DVD, they need several remote controls—one to control the DVD player, another to
control their home’s surround-sound system, and a third to control the television set (and
then the user has to get up to dim the lights!). Today’s remotes are device-based, but
because the Event Heap architecture allows for the decoupling of devices from messages
we are able to use iStuff to construct task-based remote controls. By gathering
appropriate iStuff components and using the Patch Panel application to ensure that the
appropriate iStuff events are converted to the events appropriate for the target devices
(DVD player, speakers, TV set, lights), the user can construct a task-oriented controller—
one device which controls all appliances relevant to viewing a DVD movie, regardless of
their physical connectivity. iCrafter could be used in an analogous manner to
dynamically create GUI controllers for household appliances, thus transforming a PDA
into a task-based universal remote control.

• Monitoring house state: A user is on her way out the door of her Smart Home, about to
head off to work. The display near her door shows her the status of several devices in her
home that have been instrumented with iSensors—did she leave the stove on? The lights
in her bedroom? Is the thermostat too high? Is the burglar alarm on?

• Setting house state: A user can create an iButton or similar device to set the house’s
“state” as she leaves for work everyday, and mount this button by her door. She might
configure it to lower her thermostat, switch off all lights, and activate her security system,
for example. This type of button is analogous to our “Start iRoom” button mentioned
earlier.

• Smart Home Design: Architects and interior designers could use iStuff to fine-tune the
placement of controls, speakers, and other interactive elements of a Smart Home.
Researchers and technology developers could use iStuff to quickly prototype and test
their products before putting them on the market for addition to Smart Homes.

3 Discussion and Summary
Technology advancements have made much of the original vision of ubiquitous computing
feasible. A software framework, however, that integrates those heterogeneous technologies in a
dynamic, robust, and legacy-aware fashion and provides a seamless user experience has been
missing. We have created the Stanford iRoom, a physical prototypical space for ubiquitous
computing scenarios that has been in constant use for almost two years now, to address this need.
iROS, our iRoom Operating System, runs as a meta-OS to coordinate the various applications in

the room. iROS is based on a tuplespace model, which leads to the aforementioned desired
characteristics. Its failure robustness has been better than average both for induced and real faults.
Its ability to leverage and extend existing applications has been critical for rapid prototyping in
our research.

The iStuff project builds on iROS, and tackles the problem that customizing or prototyping
physical user interfaces for ubiquitous computing scenarios (such as Smart Homes) is still a very
arduous process. It offers a toolbox of wireless, physical user interface components that can be
combined to quickly create nonstandard user interfaces for experimentation. The iROS
infrastructure has proven invaluable in making the software integration of these custom devices
very straightforward. The flexibility of the technology we developed for Stanford’s iRoom has
potential benefits in a Smart Home scenario—for example, by enabling users to quickly create a
customized, task-based interface to a system in their home.

In all, we hope that our approach to building a software and hardware framework for ubiquitous
computing environments, and the various building blocks we have implemented and deployed,
are general and useful enough so that others will find them of value. For more information on our
Stanford Interactive Workspaces project, to access iStuff documentation, or to download iROS
software, please visit our project homepage at http://iwork.stanford.edu/.

Acknowledgements
The authors would like to thank Maureen Stone, Michael Champlin, Hans Anderson and Jeff
Raymakers for their contributions to this work, as well as the Wallenberg Foundation
(http://www.wgln.org) for its financial support.

References
[1] W. Keith Edwards and Rebecca E. Grinter. At Home with Ubiquitous Computing: Seven

Challenges. In Proceedings of UbiComp 01, Atlanta, GA, pp. 256-272.
[2] Gelernter, D., and Carriero, N., Coordination Languages and their Significance,

Communications of the ACM, Vol. 32, Number 2, February, 1992.
[3] Saul Greenberg and Chester Fitchett. Phidgets: Easy development of physical interfaces

through physical widgets. In Proceedings of the UIST 2001 14th Annual ACM Symposium
on User Interface Software and Technology (Orlando, FL, USA, November 11–14, 2001),
pages 209–218, ACM, New York, 2001.

[4] Todd D. Hodes, Randy H. Katz, Edouard Servan-Schreiber, and Larry Rowe. Composable
Ad-Hoc Mobile Services for Universal Interaction. In Proceedings of Third Int’l.
Symposium on Mobile Computing and Communication (ACM MobiCom 97), Budapest,
Hungary, Sept. 1997.

[5] Hiroshi Ishii and Brygg Ullmer. Tangible bits: Towards seamless interfaces between people,
bits and atoms. In Proceedings of the CHI 97 Conference on Human Factors in Computing
Systems (Atlanta, GA, USA, March 22–27, 1997), pages 234–241 ,ACM, New York, 1997.

[6] Brad Johanson and Armando Fox. The Event Heap: A Coordination Infrastructure for
Interactive Workspaces. To appear in Proceedings of the 4th IEEE Workshop on Mobile
Computer Systems and Applications (WMCSA-2002), Callicoon, New York, June 2002.

[7] Emre Kiciman and Armando Fox. Using Dynamic Mediation to Integrate COTS Entities in a
Ubiquitous Computing Environment. In Proceedings of the Second International Symposium

on Handheld and Ubiquitous Computing 2000 (HUC2K) (Lecture Notes in Computer
Science, Springer Verlag).

[8] Toby Lehman et al. MoDAL (Mobile Document Application Language). See
http://www.almaden.ibm.com/cs/TSpaces/MoDAL

[9] Shankar R. Ponnekanti, Brian Lee, Armando Fox, Pat Hanrahan, Terry Winograd. ICrafter: A
Service Framework for Ubiquitous Computing Environments. In Proc. UbiComp 01,
Atlanta, GA.

About the authors

Jan Borchers is an Acting Assistant Professor of Computer Science at Stanford University. He
works on Human-Computer Interaction in the Stanford Interactivity Lab, where he studies post-
desktop user interfaces, HCI design patterns, and new interaction metaphors for music and other
types of multimedia. He holds a Ph.D. in computer science from Darmstadt University, and has
been known to turn his research into public interactive exhibits. He can be reached at
borchers@cs.stanford.edu.

Meredith Ringel is a first-year Ph.D. student in Computer Science at Stanford, with a focus on
Human-Computer Interaction. Merrie received her BS in Computer Science from Brown
University. She can be reached at merrie@cs.stanford.edu.

Joshua Tyler is a second-year Masters student in Computer Science at Stanford with a
specialization in Human-Computer Interaction. He received a BS in Computer Science from
Washington University. He can be reached at jtyler@cs.stanford.edu.

Armando Fox joined the Stanford faculty in January 1999. His research interests include the
design of robust Internet-scale software infrastructure, particularly as it relates to the support of
mobile and ubiquitous computing, and user interface issues related to mobile and ubiquitous
computing. Armando received a BSEE from M.I.T., an MSEE from the University of Illinois,

and a Ph.D. from UC Berkeley. He is a founder of ProxiNet, Inc. (now a division of PumaTech),
which commercialized thin client mobile computing technology developed at UC Berkeley. He
can be reached at fox@cs.stanford.edu.

