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History: Recovery-Oriented Computing

m Joint project between Stanford (Fox) and UC Berkeley (Patterson)

m ROC philosophy (“Peres’s Law"):

“If a problem has no solution, it may not be a problem, but a fact; not to be solved,
but to be coped with over time”

Israeli foreign minister Shimon Peres

e Failures (hardware, software, operator-induced) are a fact; recovery is
how we cope with them over time

@ Availability = MTTF/MTBF= MTTF / (MTTF + MTTR) - rather than just
making MTTF very large, make MTTR << MTTF

B Major research areas
@ Fast, generic failure detection and diagnosis
® Fast recovery techniques and design-for-recovery

m If recovery were predictable and fast, it would simplify both failure
detection and recovery management.
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Statistical Analysis will Save the World

. We have an unprecedented opportunity to collect and
analyze data on running systems

. These systems’ workloads lend themselves well to
statistical analysis

v~ Statistical learning theory and machine learning
techniques (SLT/ML) can help make sense of this data
and spot anomalies that may indicate failures or
impending failures

v~ Reacting to such detection can automate many aspects
of online operations

Observe - Analyze - Act
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QOutline of Talk

m Observe: Salient characteristics of today’s systems
® The promise of middleware
@ Laws of large numbers

m Analyze: Examples: How SLT can help
@ Using SLT for bug finding, performance fault detection, etc.

m Act: crash-only systems make false positives irrelevant
® Combining crash-only software with SLT

m A general architecture for pervasive SLT/ML integration
@ Architectural challenges
@ Agenda
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Observe: Middleware & data collection

m Component frameworks allow for non-intrusive data collection
without modifying the applications

e Inter-EJB calls through runtime-managed level of indirection
@ Slightly coarser grain of analysis: restrictions on “legal” paths make it

more likely we can spot anomalies
m Virtual machine monitors provide additional observation points

e Already used by ASP’s, for load balancing, app migration, etc.
@ Transparent to applications and hosted OS’s

We can collect lots of data without changes to applications, especially if
they are “framework-intensive”
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Observe: Workload

Observation Consequence
Internet service workloads consist | Large number of independent
of large numbers of independent samples gives basis for success of
users statistical techniques

Even a flaky service is doing mostly | Steady-state behavior can be
the right thing most of the time extracted from normal operation

Heavy traffic volume means most of | Baseline model can be learned
the service is exercised in a rapidly and updated in place
relatively short time periodically

m Internet service workloads are a great match for SLT/ML

m We can continuously extract baseline models from
system itself, rather than building them a priori
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Analyze: Anomaly Detection and Bugs

m Example: distributed assertion sampling [Liblit et al,
2003]

@ Instrument source code with assertions on pairs of variables
(“features”)

@ Use sampling so that any given run of program exercises only a
few assertions (to limit performance impact)

@ Use classification algorithm to identify which features are most
predictive of faults

@ Found source code bugs in bc, other programs now being
instrumented

SLT is a toolbox of techniques to examine large volumes of
data and determine which features are most “interesting”

_; © 2004 Armando Fox

EEEEEEEEEEEEEEEEEEEEEEEEEE




Act: Recovery Management

m So what happens when we detect an anomaly?

m Think of recovery as actuating “control points”--must be:
@ Safe - doesn’t cause incorrect application behavior
@ Predictable - cost of actuating control point must be well-known

® Non-disruptive - doesn’t significantly impact online performance
(as long as we don't do it too often)

m Various existing systems try to achieve these via
combination of isolation and redundancy/failover

These properties are especially important because of
false positives.
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False Positives

m Statistical techniques inevitably have nonzero false
positive rates

@ Both “algorithmic” and “semantic” false positives
® Some algorithms trade false positive rate for detection rate

m Our approach: make false positives irrelevant

@ Make control points so inexpensive to actuate that occasional
mistakes don’t matter

@ Hint: think of “rolling reboots” as a degenerate case of this
m Result: think in terms of adaptation, not recovery.

Challenge: how to design software whose control points are
safe, predictable and non-intrusive?
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Crash-Only Software: Simplifying Recovery Management

B Transactions (analogy): provides easy-to-understand invariants that
simplify programming (of data-centric apps)

m Crash-only design: provides easy-to-understand invariants that
simplify failure detection and recovery management

B A crash-only component provides PWR switch: stop = crash
@ clean shutdown = loss of power = kernel panic = ...

m One way to go down = one way to come up: start = recover

m “"Power switch” is external to component => uniform behavior
e kill -9, “turning off” (process kill) a VM, pull power cord

e Intuition: the “infrastructure” supporting the power switch is usually
simpler than the applications using it, and common across all those
applications

If recovery is cheap and predictable, can use “dumber” (therefore more
. predictable) recovery strategy
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Rest of talk

m Three crash-only building blocks

m Combination of SLT algorithms with crash-onlyness to
obtain a degree of self-management

m Plans for generalization, research challenges, etc.
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Crash-Only Building Blocks

server) [AMS
2003 & in prep.]

Subsystem Control point How realized Statistical monitoring
SSM (diskless Whole-node Quorum-like Time series of state and activity
session state reboot redundancy; (Tarzan)
store) [NSDI relaxed
04] consistency
DStore Whole-node Quorum-like Time series of state and activity
(persistent reboot redundancy and (Tarzan)
hashtable) [in predictable repair;
preparation] relaxed

consistency
JAGR (J2EE Microreboots of | Modify appserver | Pinpoint: Anomalous code
application EJB’s to undeploy/ paths and component

redeploy EJB’s and
stall pending reqs

interactions (Probabilistic
context-free grammar)

e Control points are safe, predictable, non-disruptive

e Crash-only design: shutdown=crash, recover=restart

e Makes state-management subsystems as easy to manage as

stateless Web servers
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SSM Write example: “Write to Many, Wait for Few”

Try to write to W bricks, W = 4
Must wait for WQ bricks to reply, WQ = 2

Brick 1

Brick 2

A 4

Browser AppServer

TCHW

Brick 3

Brick 4

Brick 5
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Write example: “Write to Many, Wait for Few”

Try to write to W bricks, W = 4
Must wait for WQ bricks to reply, WQ = 2

Brick 1

S Brick 2
Browser » AppServer | T
U

B Brick 3

Brick 4

Brick 5
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Write example: “Write to Many, Wait for Few”

Try to write to W bricks, W = 4
Must wait for WQ bricks to reply, WQ = 2

Brick 2

A 4

Browser AppServer

TCHW

Brick 3

Brick 5
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Write example: “Write to Many, Wait for Few”

Try to write to W random bricks, W = 4

Must wait for WQ bricks to reply, WQ = 2

Can tolerate WQ-1 failures before data loss

Browser

<

A 4

—t

AppServer

TCHW

Brick 2

Brick 3

Brick 5
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Fault-injection and recovery with 4 bricks

m After fault, steady-state throughput drops (but doesn’t fall off
saturation cliff), and recovers smoothly when new brick is added

@ Dip at t16 is caused by JVM heap size increase

Total Stub Throughput,

Fault Inducement and Recovery
210 senders using 35 stubs

4 initial bricks, 1 brick killed at t9, recovered at t19
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Fault induced € Brick Restarted
d fggg / t9 Y @ t19
O |
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time in seconds
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Predictability Through Backpressure

m Self-tuning and backpressure to shed excess load

® TCP-like “windowing” mechanism at stubs maintained per-brick lets system
discover its maximum per-brick capacity

® backpressure (early reject) to shed excess load and avoid saturation cliff

@ Gives operator a margin of error to add more resources while maintaining highly
predictable response time

m New bricks automatically absorbed and load is eventually redistributed

m Experiments with N=3, W=3, WQ=2

® Note - “# of hyperactive users” '= “# reqs per unit time”

7000
6000

Offered Load vs. Goodput

No Admission Control

[6)]
o
o
o

000

000

N WS

000

Offered Load

N

o

o

o o
|

-

Goodput ﬁ

Number of Requests
per second

'RECOVERY-ORIENTED COMPUTING

I 0123456 7 89 1011213141518 2124 27

Number of Machines

Number of requests
per second

7000 -

6000
5000
4000
3000
2000
1000

0

Offered Load vs. Goodput
AI/MD Admission Control

I

Offered Load

b Goodput

012345678 910111213141518 21242730

Number of machines

1ando Fox



Detecting "Anomalous” Conditions

B 9 metrics collected per brick every second

® NumbDropped, NumWriteProcessed, NumReadProcessed,
Timelnterval, FreeMemory, NumElements, InboxSize,
NumRequestsHandled, MemoryUsed

@ “Activity” statistics capture a notion of “forward progress”

@ "State” statistics capture resource utilization under “normal”
circumstances

m Metrics compared against those of “peer” bricks
@ Basic idea: Changes in workload tend to affect all bricks equally

@ Underlying (weak) assumption: “Most bricks are doing mostly the
right thing most of the time”

@ Anomaly in 6 or more (out of 9) metrics => reboot brick
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Detecting anomalies, cont.

m "Activity” statistics compared against other bricks
(absolute median deviation)

m "State” statistics use simple time-series analysis (Tarzan)
® keep N-length time series, discretize each data point
@ count relative frequencies of all substrings of length k or shorter
® Works even when period is irregular or not known a priori

B Note! We are not

SLT/ML researchers! WW\/\/

m Goal is to enable those
techniques to be W
brought to bear
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What faults does this handle?

m Substantially all non-Byzantine faults we injected:
® Memory bitflips in code, data, and checksums (=> crash)
e® hang/timeout/freeze
@ Network loss (drop up to 70% of packets randomly)
e Periodic slowdown (eg from garbage collection)
@ Persistent slowdown (one node lags the others)

m Intuition: the metrics capture some notion of forward progress and
satisfactory progress (relative to peers)

m All anomalies are “coerced” to crash faults
e If that turned out to be the wrong thing, it didn't cost you much to try it
@ Human notified after threshold number of restarts

This system is “always recovering” -- by adapting
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DStore: Crash-only Single Key Persistent Store

m For single-key/single-user data (e.g. profiles), make
persistence layer as easy to manage as stateless.

@ SSM relies on frequent refresh; doesn’t work for persistent state
@ DStore relies on quorums and uses single-phase operations
@ API: hash table with put(), get(), delete(); no partial updates

@ Used for Yahoo! user database, Amazon merchandise catalog,
many others

m Write to majority, read from majority

@ On read, if timestamps differ, writeback later timestamp to a
majority

@ “"Delayed-commit” semantics possible if node failure happens, but
linearizable schedule is guaranteed

A © 2004 Armando Fox

EEEEEEEEEEEEEEEEEEEEEEEEEE




DStore quorum algorithm

m Basic quorum algorithm
@ Write: broadcast to all, wait for a majority to respond
® Read: read value from one, read timestamp from majority-1

m Partial writes: coordinator failure (no 2-phase commit)

m Repair: r, returns v,

Vo: o
® Reads issued priortor, 1 X
return v no newer than v, 2 X = 4 4
® Reads issued after r, b N
return v no older than v, ; A B
wy(vy, ty) 1 Vo T2 wy(vy, ty)

@ Linearizability for fail-stop
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Results: Fast, non-intrusive recovery

1. brick killed
2. detection & recovery

m 3 bricks, 90/10 read/write mix, 85%
timestamp cache hit rate

e Common-case performance
comparable to ROWA schemes

2K |
B Rebooting a node is... |

e Safe - due to replication oK

@ Predictable - throughput restored in

<1 min. after reboot 100

@ Non-disruptive - Data available for
both GETs and PUTs throughout

disabled for 5 min.

Repairs |

50

5 10 15
| Time(minutes) |

5 10 15
Time (minutes)

20
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Automatic Detection & Recovery

8K

B Metrics and algorithm comparable to
those used in SSM

m We inject “fail-stutter” behavior by
increasing request latency

® Top: threshold=8, anomaly caught
later

® Bottom: threshold=5, anomaly caught
earlier

@ Earlier detection also results in 2
“unnecessary” reboots

oK + } + ! ; —
Repairs/sec
e But they don’t matter much P P Vi v ik
200 T T . : . .
150 O

Y :
ik R by
100 ',‘f-“- > ,J".
g o+ )
50 |

PUT reqg/sec

[llustrates trade-off of fast detection
vs. false positives o s 10

Time (minutes)
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Casting repartitioning as recovery

m Split replica group ID
(rgid), but announce both

m Existing repair
mechanisms used for
“recovery”

m Automatic detection of
which rgid to split

m Example: growing from 3
to 6 bricks

EEEEEEEEEEEEEEEEEEEEEEEEEE

"""""
*

00] 10] [00] 10] [0 ?o_|

1. brick offline
2. data copy

3. bricks online

6K |
3K |
OK Repairs | | | | | 5C

0 5 10 15 20 25 30 38
Time (minutes)
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Pinpoint: Anomalous Path Detection

m Capture paths through EJB’s as dynamic call trees (intra-
method calls hidden)

m Build probabilistic context-free grammar from these

m Detect trees that correspond to very low probability
parses
@ Component interaction analysis R
80% detectionprat.e
with 1.8% FP rate
Across 92% of expts:

currently finds 55-75% of
failures.

40% detection rate
with 0.2% FP rate

Detection rate

1 " 1 1 1 1

@ Path shape analysis detects
>90% of failures; but correctly
diagnoses fewer. o =®m & & ® @

® Shared-data analysis pending
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JAGR: JBoss with Micro-reboots

JBoss: manual recovery JAGR: automatic self-recovery

T T T T T I I T T T T T T T
78 . 78
60 [ a2 - 60 |
leJ”JL

i U ) [J v
|

40 ﬂ .
30

: = Pl
: J Nl

Time [minutes] Time [minutes]

Requests/sec
Regquestsssec

m performability of RUBIS (goodput/sec vs. time)

e vanilla JBoss w/manual restarting of app-server, vs.
JAGR w/automatic recovery and micro-rebooting

® JAGR/RUBIS does 78% better than JBoss/RUBIS
@ Maintains 20 reg/sec, even in the face of faults

® Lower steady-state after recovery in first graph: class reloading,
recompiling, etc., which is not necessary with micro-reboots
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A General Architecture for SLT/ML

L] Cha”enges: Datacenter boundary
@ SLT algorithms must be

Client requests

integrated and online ; Q .............. o

. . Responses N ‘ "% component :

@ Data collection without /l\l:
. Recovery actions to
perturblng SyStem other datacenters

Recovery synthesis

VVVY
Collection

® Data StO ra g €an d Observations from
Mma nagement for models other datacenters

@ Wily attackers who can
game the algorithms

@ Multi-level learning and !
multi-timescale learning othor datacentors
\

T e e e e e e e e R R R R R R R R R R R R R R e e e e

® Much more
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Ongoing Work

m Complete Pinpoint and JAGR, and integrate these
@ Pinpoint being deployed now at Amazon.com

m Benchmark JAGR+SSM running unmodified J2EE apps
® To be submitted to OSDI'04

m Broader research program: RADS (Reliable Adaptive
Distributed Systems), jointly with UC Berkeley

@ Aggressive application of SLT/ML

@ Includes lower layers: programmable network elements at edge
networks, wide-area resilient routing protocols, generic software
architecture for data collection and SLT/ML application

@ NSF proposal being submitted next week
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Summary

m Statistical analysis is a toolbox of powerful techniques for
anomaly/novelty detection, classification, etc.

® Timeis

m Crash-on
sufficient

m Crash-on

ripe to bring these to bear on dependable computing

y design can make cost of false-positives
y low that we can simply tolerate them

y design makes recovery predictable by

controlling it using dead-simple mechanisms

m Many technologies and trends already in place to
generalize this approach

® Middleware-intensive apps, Virtual Machines, ...
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Backup Slides
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Crash-Only Design Lessons from SSM

m Eliminate coupling

@ No dependence on any specific brick, just on a subset of
minimum size -- even at the granularity of individual requests

@ Not even across phases of an operation: single-phase
nonblocking ops only => predictable amount of work/request

@ Use randomness to avoid deterministic worst cases and hotspots

® We initially violated this guideline by using an off-the-shelf JMS
implementation that was centralized

m Make parts interchangeable
@ Any replica in a write-set is as good as any other
@ Unlike erasure coding, only need 1 replica to survive

@ Cost is higher storage overhead, but we're willing to pay that to
get the self-* properties
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Design Lessons, cont.

m It's OK to say no: use backpressure and AIMD to limit
load, and don’t make promises you can't keep

@ Initially violated this too: blocking implementation of
NetworkWrite() would cause lock starvation when SAN failure
was injected

m It's OK to make mistakes
@ Enables future use of aggressive statistical monitoring techniques

@ Potentially allows a large body of statistical process control and
machine learning to be brought to bear on this problem
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Design lessons, cont.

m For storage nodes... "Be independent”

@ A storage node shouldn’t be dependent on other storage nodes to
service a request

@ Anti-examples: primary-secondary replication, multi-database-node
join

@ In practice: expose a simple hash table API to reduce data
dependencies

@ Avoid single operations that lead to torrents of new work: use lazy
repair to fix inconsistencies as they are found
m For clients... "Don't be picky”
@ A client shouldn’t rely on any specific node to be up
@ Anti-examples: ROWA, 2-phase commit

@ In practice: use quorums to tolerate internal inconsistency among
replicas
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DStore: Read timestamp overhead

m Benchmark details:
® 3 bricks, 3 GET clients

12K

® read_ts optimization: read ]
i 10K | rowa 1
v_alue from 1 brick, | quomim ——
timestamp from 1 brick 8K |
6K |
m Summary: 4K -
L]
® Disk is bottleneck, so 2K 1 = m
reading a timestamp oK —
. . 60 65 70 75 80 85 90 95 100
(pinned in memory) adds Cache hit rate

little overhead

Common-case
performance
comparable to ROWA
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DStore R/W mix microbenchmarks

m After failure, thruput restored in seconds

m Throttling one brick doesn’t bottleneck the
system

m Online repartitioning: “fail” a brick, copy
it, reintegrate both

m In all cases, data available for both reads
& writes throughout
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ﬁ . DStore
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JAGR: Recovery microbenchmarks

m RUBIS
@ E-Bay-like app

® Has many naturally
occurring faults

® Running on vanilla
JBoss gives poor
availability

® 4 concurrent clients
causes deadlock

m JAGR automatically
recovers every time

Cc3

C2Z

C1

Co

JBoss / RUBiS
I

a e

JAGR / RUBiS
|

4 6 8 16
Time [minutes]
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JAGR: Modifing JBoss

Stalls user

reguests during

—

Client
Requests Builds fault propagation
—_ map, based| on obsenved ExclMon: detects! Java

failures exceptions in the
Restart single EJBs, application| & appi server

riedeploy apps, or restart PPMon:| detects
whole app-server ) “anomalous” behaviors

Applica Server (JBoss)

E2EMon;: detectsiapp-
specific, end-to-end failures
inl requests (also app-generic Before deployment, use

using character’ histograms) controlled faults to build
Recevery Map
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