
Why Recovery Should Be Free,Why Recovery Should Be Free,
And Often Can BeAnd Often Can Be

ArmandoArmando Fox Fox, Stanford, Stanford University (fox@cs.stanford.edu)University (fox@cs.stanford.edu)
Joint work with George Candea, Andrew Huang, Ben Ling, Emre Kiciman, Stanford UniversityJoint work with George Candea, Andrew Huang, Ben Ling, Emre Kiciman, Stanford University

and Dave Patterson, Mike Jordan, Randy Katz, et al., UC Berkeleyand Dave Patterson, Mike Jordan, Randy Katz, et al., UC Berkeley

© 2004 Armando Fox

History: Recovery-Oriented ComputingHistory: Recovery-Oriented Computing

 Joint project between Stanford (Fox) and UC Berkeley (Patterson)Joint project between Stanford (Fox) and UC Berkeley (Patterson)

 ROC philosophy (ROC philosophy (““PeresPeres’’s Laws Law””):):
““If a problem has no solution, it may not be a problem, but a fact; not to be solved,If a problem has no solution, it may not be a problem, but a fact; not to be solved,

but to be coped with over timebut to be coped with over time””
Israeli foreign minister Shimon PeresIsraeli foreign minister Shimon Peres

 Failures (hardware, software, operator-induced) are a fact; recovery isFailures (hardware, software, operator-induced) are a fact; recovery is
how we cope with them over timehow we cope with them over time

 Availability = MTTF/MTBF= MTTF / Availability = MTTF/MTBF= MTTF / (MTTF + MTTR) - (MTTF + MTTR) - rather than justrather than just
making MTTF very large, make MTTR << MTTFmaking MTTF very large, make MTTR << MTTF

 Major research areasMajor research areas
 Fast, generic failure detection and diagnosisFast, generic failure detection and diagnosis

 Fast recovery techniques and design-for-recoveryFast recovery techniques and design-for-recovery

 If recovery were predictable and fast, it would simplify both If recovery were predictable and fast, it would simplify both failurefailure
detection detection and and recovery management.recovery management.

© 2004 Armando Fox

Statistical Analysis will Save the WorldStatistical Analysis will Save the World

 We have an unprecedented opportunity to collect andWe have an unprecedented opportunity to collect and
analyze data on running systemsanalyze data on running systems

 These systemsThese systems’’ workloads lend themselves well to workloads lend themselves well to
statistical analysisstatistical analysis

 Statistical learning theory and machine learningStatistical learning theory and machine learning
techniques (SLT/ML) can help make sense of this datatechniques (SLT/ML) can help make sense of this data
and and spot anomaliesspot anomalies that may indicate failures or that may indicate failures or
impending failuresimpending failures

 Reacting to such detection can automate many aspectsReacting to such detection can automate many aspects
of online operationsof online operations

Observe - Analyze - ActObserve - Analyze - Act

© 2004 Armando Fox

Outline of TalkOutline of Talk

 ObserveObserve: : Salient characteristics of todaySalient characteristics of today’’s systemss systems
 The promise of middlewareThe promise of middleware

 Laws of large numbersLaws of large numbers

 AnalyzeAnalyze: : Examples: How SLT can helpExamples: How SLT can help
 Using SLT for bug finding, performance fault detection, etc.Using SLT for bug finding, performance fault detection, etc.

 ActAct:: crash-only systems make false positives irrelevantcrash-only systems make false positives irrelevant
 Combining Combining crash-only software crash-only software with SLTwith SLT

 A general architecture for pervasive SLT/ML integrationA general architecture for pervasive SLT/ML integration
 Architectural challengesArchitectural challenges

 AgendaAgenda

© 2004 Armando Fox

Observe: Middleware & data collectionObserve: Middleware & data collection

 Component frameworks allow for non-intrusive data collectionComponent frameworks allow for non-intrusive data collection
without modifying the applicationswithout modifying the applications
 Inter-EJB calls through runtime-managed level of indirectionInter-EJB calls through runtime-managed level of indirection

 Slightly coarser grain of analysis: restrictions on Slightly coarser grain of analysis: restrictions on ““legallegal”” paths make it paths make it
more likely we can spot anomaliesmore likely we can spot anomalies

 Virtual machine monitors provide additional observation pointsVirtual machine monitors provide additional observation points
 Already used by ASPAlready used by ASP’’s, for load balancing, app migration, etc.s, for load balancing, app migration, etc.

 Transparent to applications Transparent to applications and hosted OSand hosted OS’’ss

We can collect lots of data without changes to applications, especially ifWe can collect lots of data without changes to applications, especially if
they are they are ““framework-intensiveframework-intensive””

© 2004 Armando Fox

Observe: WorkloadObserve: Workload
ConsequenceConsequenceObservationObservation

Baseline model can be learnedBaseline model can be learned
rapidly and updated in placerapidly and updated in place
periodicallyperiodically

Heavy traffic volume means most ofHeavy traffic volume means most of
the service is exercised in athe service is exercised in a
relatively short timerelatively short time

Steady-state behavior can beSteady-state behavior can be
extracted from normal operationextracted from normal operation

Even a flaky service is doing mostlyEven a flaky service is doing mostly
the right thing most of the timethe right thing most of the time

Large number of independentLarge number of independent
samples gives basis for success ofsamples gives basis for success of
statistical techniquesstatistical techniques

Internet service workloads consistInternet service workloads consist
of large numbers of independentof large numbers of independent
usersusers

 Internet service workloads are a great match for SLT/MLInternet service workloads are a great match for SLT/ML

 We can continuously extract baseline models fromWe can continuously extract baseline models from
system itself, rather than building them system itself, rather than building them a prioria priori

© 2004 Armando Fox

Analyze: Anomaly Detection and BugsAnalyze: Anomaly Detection and Bugs

 Example: distributed assertion sampling [Liblit et al,Example: distributed assertion sampling [Liblit et al,
2003]2003]
 Instrument source code with assertions on pairs of variablesInstrument source code with assertions on pairs of variables

((““featuresfeatures””))

 Use sampling so that any given run of program exercises only aUse sampling so that any given run of program exercises only a
few assertions (to limit performance impact)few assertions (to limit performance impact)

 Use classification algorithm to identify which features are mostUse classification algorithm to identify which features are most
predictive of faultspredictive of faults

 Found source code bugs in Found source code bugs in bcbc, other programs now being, other programs now being
instrumentedinstrumented

SLT is a toolbox of techniques to examine large volumes ofSLT is a toolbox of techniques to examine large volumes of
data and determine which features are most data and determine which features are most ““interestinginteresting””

© 2004 Armando Fox

Act: Recovery ManagementAct: Recovery Management

 So what happens when we detect an anomaly?So what happens when we detect an anomaly?

 Think of recovery as actuating Think of recovery as actuating ““control pointscontrol points””--must be:--must be:
 Safe - doesnSafe - doesn’’t cause incorrect application behaviort cause incorrect application behavior

 Predictable - cost of actuating control point must be well-knownPredictable - cost of actuating control point must be well-known

 Non-disruptive - doesnNon-disruptive - doesn’’t significantly impact online performancet significantly impact online performance
(as long as we don(as long as we don’’t do it too often)t do it too often)

 Various existing systems try to achieve these viaVarious existing systems try to achieve these via
combination of isolation and redundancy/failovercombination of isolation and redundancy/failover

These properties are especially important because ofThese properties are especially important because of
false positives.false positives.

© 2004 Armando Fox

False PositivesFalse Positives

 Statistical techniques inevitably have nonzero falseStatistical techniques inevitably have nonzero false
positive ratespositive rates
 Both Both ““algorithmicalgorithmic”” and and ““semanticsemantic”” false positives false positives

 Some algorithms trade false positive rate for detection rateSome algorithms trade false positive rate for detection rate

 Our approach: make false positives irrelevantOur approach: make false positives irrelevant
 Make control points so inexpensive to actuate that occasionalMake control points so inexpensive to actuate that occasional

mistakes donmistakes don’’t mattert matter

 Hint: think of Hint: think of ““rolling rebootsrolling reboots”” as a degenerate case of this as a degenerate case of this

 Result: think in terms of Result: think in terms of adaptation, adaptation, not recovery.not recovery.

Challenge: how to design software whose control points areChallenge: how to design software whose control points are
safe, predictable and non-intrusive?safe, predictable and non-intrusive?

© 2004 Armando Fox

Crash-Only Software: Simplifying Recovery ManagementCrash-Only Software: Simplifying Recovery Management

 Transactions (analogy): provides easy-to-understand invariants thatTransactions (analogy): provides easy-to-understand invariants that
simplify programming (of data-centric apps)simplify programming (of data-centric apps)

 Crash-only design: provides easy-to-understand invariants thatCrash-only design: provides easy-to-understand invariants that
simplify failure detection and recovery managementsimplify failure detection and recovery management

 A crash-only component provides PWR switch: stop = crashA crash-only component provides PWR switch: stop = crash
 clean shutdown = loss of power = kernel panic = ...clean shutdown = loss of power = kernel panic = ...

 One way to go down = one way to come up: start = recoverOne way to go down = one way to come up: start = recover

 ““Power switchPower switch”” is external to component => uniform behavior is external to component => uniform behavior
 kill -9, kill -9, ““turning offturning off”” (process kill) a VM, pull power cord (process kill) a VM, pull power cord

 Intuition: the Intuition: the ““infrastructureinfrastructure”” supporting the power switch is usually supporting the power switch is usually
simpler than the applications using it, and common across all thosesimpler than the applications using it, and common across all those
applicationsapplications

If recovery is cheap and predictable, can use If recovery is cheap and predictable, can use ““dumberdumber”” (therefore more(therefore more
predictable)predictable) recovery strategy recovery strategy

© 2004 Armando Fox

Rest of talkRest of talk

 Three crash-only building blocksThree crash-only building blocks

 Combination of SLT algorithms with crash-onlyness toCombination of SLT algorithms with crash-onlyness to
obtain a degree of self-managementobtain a degree of self-management

 Plans for generalization, research challenges, etc.Plans for generalization, research challenges, etc.

© 2004 Armando Fox

Crash-Only Building BlocksCrash-Only Building Blocks

Pinpoint: Anomalous codePinpoint: Anomalous code
paths and componentpaths and component
interactions (Probabilisticinteractions (Probabilistic
context-free grammar)context-free grammar)

Modify appserverModify appserver
to undeploy/to undeploy/
redeploy EJBredeploy EJB’’s ands and
stall pending reqsstall pending reqs

Microreboots ofMicroreboots of
EJBEJB’’ss

JAGR (J2EEJAGR (J2EE
applicationapplication
server) server) [AMS[AMS
2003 & in prep.]2003 & in prep.]

Time series of state and activityTime series of state and activity
(Tarzan)(Tarzan)

Quorum-likeQuorum-like
redundancy andredundancy and
predictable repair;predictable repair;
relaxedrelaxed
consistencyconsistency

Whole-nodeWhole-node
rebootreboot

DStoreDStore
(persistent(persistent
hashtable) hashtable) [in[in
preparation]preparation]

Time series of state and activityTime series of state and activity
(Tarzan)(Tarzan)

Quorum-likeQuorum-like
redundancy;redundancy;
relaxedrelaxed
consistencyconsistency

Whole-nodeWhole-node
rebootreboot

SSM (disklessSSM (diskless
session statesession state
store) store) [NSDI[NSDI
04]04]

Statistical monitoringStatistical monitoringHow realizedHow realizedControl pointControl pointSubsystemSubsystem

• Control points are safe, predictable, non-disruptive

• Crash-only design: shutdown=crash, recover=restart

• Makes state-management subsystems as easy to manage as
stateless Web servers

© 2004 Armando Fox

SSM Write example: SSM Write example: ““Write to Many, Wait for FewWrite to Many, Wait for Few””

Browser AppServer
S
T
U
B

Brick 1

Brick 2

Brick 3

Brick 4

Try to write to W bricks, W = 4
Must wait for WQ bricks to reply, WQ = 2

Brick 5

© 2004 Armando Fox

Write example: Write example: ““Write to Many, Wait for FewWrite to Many, Wait for Few””

Browser AppServer
S
T
U
B

Brick 1

Brick 2

Brick 3

Brick 4

Try to write to W bricks, W = 4
Must wait for WQ bricks to reply, WQ = 2

Brick 5

© 2004 Armando Fox

Write example: Write example: ““Write to Many, Wait for FewWrite to Many, Wait for Few””

Browser AppServer
S
T
U
B

Brick 1

Brick 2

Brick 3

Brick 4

Try to write to W bricks, W = 4
Must wait for WQ bricks to reply, WQ = 2

Brick 5

© 2004 Armando Fox

Write example: Write example: ““Write to Many, Wait for FewWrite to Many, Wait for Few””

Browser AppServer
S
T
U
B

Brick 1

Brick 2

Brick 3

Brick 4

Try to write to W random bricks, W = 4
Must wait for WQ bricks to reply, WQ = 2

Can tolerate WQ-1 failures before data loss

1
4

Brick 5

© 2004 Armando Fox

Fault-injection and recovery with 4 bricksFault-injection and recovery with 4 bricks

 After fault, steady-state throughput drops After fault, steady-state throughput drops (but doesn(but doesn’’t fall offt fall off
saturation cliffsaturation cliff),), and recovers and recovers smoothly whensmoothly when new brick is added new brick is added

 Dip at t16 is caused by JVM heap size Dip at t16 is caused by JVM heap size increaseincrease

Total Stub Throughput,

Fault Inducement and Recovery
210 senders using 35 stubs

4 initial bricks, 1 brick killed at t9 , recovered at t19

Fault induced @

t9

Brick Restarted

@ t19

0

1000

2000

3000

4000

5000

6000

7000

1 3 5 7 9 11 13 15 17 19 21 23
time in seconds

#
 r

e
q

/s
e

c

© 2004 Armando Fox

Predictability Through BackpressurePredictability Through Backpressure

 Self-tuning and backpressure to shed excess loadSelf-tuning and backpressure to shed excess load

 TCP-like TCP-like ““windowingwindowing”” mechanism at stubs maintained per-brick lets system mechanism at stubs maintained per-brick lets system
discover its maximum per-brick capacitydiscover its maximum per-brick capacity

 backpressure (early reject) to shed excess load and avoid saturation cliffbackpressure (early reject) to shed excess load and avoid saturation cliff

 Gives operator a margin of error to add more resources while maintaining Gives operator a margin of error to add more resources while maintaining highlyhighly
predictable predictable response timeresponse time

 New bricks automatically absorbed and load is eventually redistributedNew bricks automatically absorbed and load is eventually redistributed

 Experiments with N=3, W=3, WQ=2Experiments with N=3, W=3, WQ=2

 Note - Note - ““# of hyperactive users# of hyperactive users”” != != ““# reqs per unit time# reqs per unit time””

Offered Load vs. Goodput

AI/MD Admission Control

0

1000

2000

3000

4000

5000

6000

7000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 21 24 27 30

Number of machines

N
u

m
b

e
r

o
f

re
q

u
e

s
ts

p
e

r
s

e
c

o
n

d

Offered Load

Goodput

Offered Load vs. Goodput

No Admission Control

0

1000

2000

3000

4000

5000

6000

7000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 21 24 27

Number of Machines

N
u

m
b

e
r

o
f

R
e
q

u
e
s
ts

p
e

r
s

e
c

o
n

d

Offered Load

Goodput

© 2004 Armando Fox

Detecting Detecting ““AnomalousAnomalous”” Conditions Conditions

 9 metrics collected per brick every second9 metrics collected per brick every second
 NumDropped, NumWriteProcessedNumDropped, NumWriteProcessed, , NumReadProcessed,NumReadProcessed,

TimeInterval, FreeMemory, NumElements, InboxSize,TimeInterval, FreeMemory, NumElements, InboxSize,
NumRequestsHandled, MemoryUsedNumRequestsHandled, MemoryUsed

 ““ActivityActivity”” statistics capture a notion of statistics capture a notion of ““forward progressforward progress””

 ““StateState”” statistics capture resource utilization under statistics capture resource utilization under ““normalnormal””
circumstancescircumstances

 Metrics compared against those of Metrics compared against those of ““peerpeer”” bricks bricks
 Basic idea: Changes in workload tend to affect all bricks equallyBasic idea: Changes in workload tend to affect all bricks equally

 Underlying (weak) assumption: Underlying (weak) assumption: ““Most bricks are doing mostly theMost bricks are doing mostly the
right thing most of the timeright thing most of the time””

 Anomaly in 6 or more (out of 9) metrics => reboot brickAnomaly in 6 or more (out of 9) metrics => reboot brick

© 2004 Armando Fox

Detecting anomalies, cont.Detecting anomalies, cont.

 ““ActivityActivity”” statistics compared against other bricks statistics compared against other bricks
(absolute median deviation)(absolute median deviation)

 ““StateState”” statistics use simple time-series analysis (Tarzan) statistics use simple time-series analysis (Tarzan)
 keep N-length time series, discretize each data pointkeep N-length time series, discretize each data point

 count relative frequencies of all substrings of length count relative frequencies of all substrings of length k k or shorteror shorter

 Works even when period is irregular or not known Works even when period is irregular or not known a prioria priori

 Note! We are notNote! We are not
SLT/ML researchers!SLT/ML researchers!

 Goal is to Goal is to enable enable thosethose
techniques to betechniques to be
brought to bearbrought to bear

© 2004 Armando Fox

What faults does this handle?What faults does this handle?

 Substantially all non-Byzantine faults we injected:Substantially all non-Byzantine faults we injected:

 Memory bitflips in code, data, and checksums (=> crash)Memory bitflips in code, data, and checksums (=> crash)

 hang/timeout/freezehang/timeout/freeze

 Network loss (drop up to 70% of packets randomly)Network loss (drop up to 70% of packets randomly)

 Periodic slowdown (eg from garbage collection)Periodic slowdown (eg from garbage collection)

 Persistent slowdown (one node lags the others)Persistent slowdown (one node lags the others)

 Intuition: the metrics capture some notion of Intuition: the metrics capture some notion of forward progress andforward progress and
satisfactory progress satisfactory progress (relative to peers)(relative to peers)

 All anomalies are All anomalies are ““coercedcoerced”” to crash faults to crash faults

 If that turned out to be the wrong thing, it didnIf that turned out to be the wrong thing, it didn’’t cost you much to try itt cost you much to try it

 Human notified after threshold number of restartsHuman notified after threshold number of restarts

This system is This system is ““always recoveringalways recovering”” -- by adapting -- by adapting

© 2004 Armando Fox

DStore: Crash-only Single Key Persistent StoreDStore: Crash-only Single Key Persistent Store

 For single-key/single-user data (e.g. profiles), makeFor single-key/single-user data (e.g. profiles), make
persistence layer as persistence layer as easy to manage aseasy to manage as stateless stateless..
 SSM relies on frequent refresh; doesnSSM relies on frequent refresh; doesn’’t work for persistent statet work for persistent state

 DStore relies on quorums and uses single-phase operationsDStore relies on quorums and uses single-phase operations

 API: hash table with put(), get(), delete(); no partial updatesAPI: hash table with put(), get(), delete(); no partial updates

 Used for Yahoo! user database, Amazon merchandise catalog,Used for Yahoo! user database, Amazon merchandise catalog,
many othersmany others

 Write to majority, read from majorityWrite to majority, read from majority
 On read, if timestamps differ, writeback later timestamp to aOn read, if timestamps differ, writeback later timestamp to a

majoritymajority

 ““Delayed-commitDelayed-commit”” semantics possible if node failure happens, but semantics possible if node failure happens, but
linearizable schedule is guaranteedlinearizable schedule is guaranteed

© 2004 Armando Fox

DStoreDStore quorum quorum algorithmalgorithm

 Basic quorum algorithmBasic quorum algorithm
 Write: broadcast to all, wait for a majority to respondWrite: broadcast to all, wait for a majority to respond

 Read: read value from one, read timestamp from majority-1Read: read value from one, read timestamp from majority-1

 Partial writes: coordinator failure (no 2-phase commit)Partial writes: coordinator failure (no 2-phase commit)

 Repair: rRepair: r22 returns v returns v11

 Reads issued prior to rReads issued prior to r22

return v no newer than vreturn v no newer than v11

 Reads issued after rReads issued after r22

return v no older than vreturn v no older than v11

 LinearizabilityLinearizability for fail-stop for fail-stop

1
2
3

v0, t0

w1(v1, t1) r2r1 v0 w2(v1, t1)

© 2004 Armando Fox

 0 5 10 15 20
Time (minutes)

0

50
Repairs

0

50
Repairs

0K

1K

2K

3K

4K

G
E

T
 r

e
q
/s

e
c

0K

1K

2K

3K

4K

G
E

T
 r

e
q
/s

e
c

Results: Fast, non-intrusive recoveryResults: Fast, non-intrusive recovery

 3 bricks, 90/10 read/write mix, 85%3 bricks, 90/10 read/write mix, 85%
timestamp cache hit ratetimestamp cache hit rate

 Common-case performanceCommon-case performance
comparable to ROWA schemescomparable to ROWA schemes

 Rebooting a node is...Rebooting a node is...

 Safe - due to replicationSafe - due to replication

 Predictable - throughput restored inPredictable - throughput restored in
<1 min. after reboot<1 min. after reboot

 Non-disruptive - DataNon-disruptive - Data available for available for
both GETsboth GETs and and PUTsPUTs throughoutthroughout

1. brick killed
2. detection & recovery
disabled for 5 min.

0

100

 0 5 10 15 20

P
U

T
 r

e
q

/s
e

c

Time (minutes)

0

100

 0 5 10 15 20

P
U

T
 r

e
q

/s
e

c

Time (minutes)

© 2004 Armando Fox

Automatic Detection & RecoveryAutomatic Detection & Recovery

 Metrics and algorithm comparable toMetrics and algorithm comparable to
those used in SSMthose used in SSM

 We inject We inject ““fail-stutterfail-stutter”” behavior by behavior by
increasing request latencyincreasing request latency

 Top: threshold=8, anomaly caughtTop: threshold=8, anomaly caught
laterlater

 Bottom: threshold=5, anomaly caughtBottom: threshold=5, anomaly caught
earlierearlier

 Earlier detection also results in 2Earlier detection also results in 2
““unnecessaryunnecessary”” reboots reboots

 But they donBut they don’’t matter mucht matter much

Illustrates trade-off of fast detectionIllustrates trade-off of fast detection
vs. false positivesvs. false positives

© 2004 Armando Fox

Casting repartitioning as recoveryCasting repartitioning as recovery

 Split replica group IDSplit replica group ID
((rgidrgid), but announce), but announce bothboth

 Existing repairExisting repair
mechanisms used formechanisms used for
““recoveryrecovery””

 Automatic detection ofAutomatic detection of
which rgid to splitwhich rgid to split

 Example: growing from 3Example: growing from 3
to 6 bricksto 6 bricks

00 10 00 10 00 1000 1010

 0 5 10 15 20 25 30 35
Time (minutes)

0

50
Repairs

0

50
Repairs

0K

3K

6K

G
E

T
 r

e
q
/s

e
c

0K

3K

6K

G
E

T
 r

e
q
/s

e
c

1. brick offline
2. data copy
3. bricks online

© 2004 Armando Fox

Pinpoint: Anomalous Path DetectionPinpoint: Anomalous Path Detection

 Capture paths through EJBCapture paths through EJB’’s as dynamic call trees (intra-s as dynamic call trees (intra-
method calls hidden)method calls hidden)

 Build probabilistic context-free grammar from theseBuild probabilistic context-free grammar from these

 Detect trees that correspond to very low probabilityDetect trees that correspond to very low probability
parsesparses
 Component interaction analysisComponent interaction analysis

currently finds 55-75% ofcurrently finds 55-75% of
failures.failures.

 Path shape analysis detectsPath shape analysis detects
>90% of failures; but correctly>90% of failures; but correctly
diagnoses fewer.diagnoses fewer.

 Shared-data analysis pendingShared-data analysis pending

Across all expts:
80% detection rate
with 1.8% FP rate

Across 92% of expts:
40% detection rate
with 0.2% FP rate

False positive rate

D
et

ec
tio

n
ra

te

© 2004 Armando Fox

JAGR: JBoss with Micro-rebootsJAGR: JBoss with Micro-reboots

 performability of RUBiS (goodput/sec vs. time)performability of RUBiS (goodput/sec vs. time)
 vanilla JBoss w/manual restarting of app-server, vs.vanilla JBoss w/manual restarting of app-server, vs.

JAGR w/automatic recovery and micro-rebootingJAGR w/automatic recovery and micro-rebooting

 JAGR/RUBiS does 78% better than JBoss/RUBiSJAGR/RUBiS does 78% better than JBoss/RUBiS

 Maintains 20 req/sec, even in the face of faultsMaintains 20 req/sec, even in the face of faults

 Lower steady-state after recovery in first graph: class reloading,Lower steady-state after recovery in first graph: class reloading,
recompiling, etc., which is not necessary with micro-rebootsrecompiling, etc., which is not necessary with micro-reboots

© 2004 Armando Fox

A General Architecture for SLT/MLA General Architecture for SLT/ML

 Challenges:Challenges:
 SLT algorithms must beSLT algorithms must be

integrated integrated and and onlineonline

 Data collection withoutData collection without
perturbing systemperturbing system

 Data storage andData storage and
management for modelsmanagement for models

 Wily attackers who canWily attackers who can
game the algorithmsgame the algorithms

 Multi-level learning andMulti-level learning and
multi-timescale learningmulti-timescale learning

 Much moreMuch more

Recovery synthesis

Client requests

Responses

Datacenter boundary

Collection

Short-term
store

Long-term
store

Online
algo.

Online
algo.

Observations from
other datacenters

Offline
algo.

Offline
algo.

Recovery actions to
other datacenters

Observations to
other datacenters

Application
component

Application
server

© 2004 Armando Fox

Ongoing WorkOngoing Work

 Complete Pinpoint and JAGR, and integrate theseComplete Pinpoint and JAGR, and integrate these
 Pinpoint being deployed now at Amazon.comPinpoint being deployed now at Amazon.com

 Benchmark JAGR+SSM running unmodified J2EE appsBenchmark JAGR+SSM running unmodified J2EE apps
 To be submitted to OSDITo be submitted to OSDI’’0404

 Broader research program: RADS (Reliable AdaptiveBroader research program: RADS (Reliable Adaptive
Distributed Systems), jointly with UC BerkeleyDistributed Systems), jointly with UC Berkeley
 Aggressive application of SLT/MLAggressive application of SLT/ML

 Includes lower layers: programmable network elements at edgeIncludes lower layers: programmable network elements at edge
networks, wide-area resilient routing protocols, generic softwarenetworks, wide-area resilient routing protocols, generic software
architecture for data collection and SLT/ML applicationarchitecture for data collection and SLT/ML application

 NSF proposal being submitted next weekNSF proposal being submitted next week

© 2004 Armando Fox

SummarySummary

 Statistical analysis is a toolbox of powerful techniques forStatistical analysis is a toolbox of powerful techniques for
anomaly/novelty detection, classification, etc.anomaly/novelty detection, classification, etc.
 Time is ripe to bring these to bear on dependable computingTime is ripe to bring these to bear on dependable computing

 Crash-only design can make cost of false-positivesCrash-only design can make cost of false-positives
sufficiently low that we can simply tolerate themsufficiently low that we can simply tolerate them

 Crash-only design makes recovery predictable byCrash-only design makes recovery predictable by
controlling it using dead-simple mechanismscontrolling it using dead-simple mechanisms

 Many technologies and trends already in place toMany technologies and trends already in place to
generalize this approachgeneralize this approach
 Middleware-intensive apps, Virtual Machines, ...Middleware-intensive apps, Virtual Machines, ...

© 2004 Armando Fox

Backup SlidesBackup Slides

© 2004 Armando Fox

Crash-Only Design Lessons from SSMCrash-Only Design Lessons from SSM

 Eliminate couplingEliminate coupling
 No dependence on any specific brick, just on a subset ofNo dependence on any specific brick, just on a subset of

minimum size -- even at the granularity of individual requestsminimum size -- even at the granularity of individual requests

 Not even across phases of an operation: single-phaseNot even across phases of an operation: single-phase
nonblocking ops only => predictable amount of work/requestnonblocking ops only => predictable amount of work/request

 Use randomness to avoid deterministic worst cases and hotspotsUse randomness to avoid deterministic worst cases and hotspots

 We initially violated this guideline by using an off-the-shelf JMSWe initially violated this guideline by using an off-the-shelf JMS
implementation that was centralizedimplementation that was centralized

 Make parts interchangeableMake parts interchangeable
 Any replica in a write-set is as good as any otherAny replica in a write-set is as good as any other

 Unlike erasure coding, only need 1 replica to surviveUnlike erasure coding, only need 1 replica to survive

 Cost is higher storage overhead, but weCost is higher storage overhead, but we’’re willing to pay that tore willing to pay that to
get the self-* propertiesget the self-* properties

© 2004 Armando Fox

Design Lessons, cont.Design Lessons, cont.

 ItIt’’s OK to say no: use backpressure and AIMD to limits OK to say no: use backpressure and AIMD to limit
load, and donload, and don’’t make promises you cant make promises you can’’t keept keep
 Initially violated this too: blocking implementation ofInitially violated this too: blocking implementation of

NetworkWrite() would cause lock starvation when SAN failureNetworkWrite() would cause lock starvation when SAN failure
was injectedwas injected

 ItIt’’s OK to make mistakess OK to make mistakes
 Enables future use of aggressive statistical monitoring techniquesEnables future use of aggressive statistical monitoring techniques

 Potentially allows a large body of statistical process control andPotentially allows a large body of statistical process control and
machine learning to be brought to bear on this problemmachine learning to be brought to bear on this problem

© 2004 Armando Fox

 For storage nodesFor storage nodes…… ““Be independentBe independent””

 A storage node shouldnA storage node shouldn’’t be dependent on other storage nodes tot be dependent on other storage nodes to
service a requestservice a request

 Anti-examples: primary-secondary replication, multi-database-nodeAnti-examples: primary-secondary replication, multi-database-node
joinjoin

 In practice: expose a simple hash table API to reduce dataIn practice: expose a simple hash table API to reduce data
dependenciesdependencies

 Avoid single operations that lead to torrents of new work: use lazyAvoid single operations that lead to torrents of new work: use lazy
repair to fix inconsistencies as they are foundrepair to fix inconsistencies as they are found

 For clientsFor clients…… ““DonDon’’t be pickyt be picky””

 A client shouldnA client shouldn’’t rely on any t rely on any specificspecific node to be up node to be up

 Anti-examples: ROWA, 2-phase commitAnti-examples: ROWA, 2-phase commit

 In practice: use quorums to tolerate internal inconsistency amongIn practice: use quorums to tolerate internal inconsistency among
replicasreplicas

Design lessons, cont.Design lessons, cont.

© 2004 Armando Fox

DStore:DStore: Read timestamp overhead Read timestamp overhead

 Benchmark details:Benchmark details:
 3 bricks, 3 GET clients3 bricks, 3 GET clients

 read_tsread_ts optimization: read optimization: read
value from 1 brick,value from 1 brick,
timestamp from 1 bricktimestamp from 1 brick

 Summary:Summary:
 Disk is bottleneck, soDisk is bottleneck, so

reading a timestampreading a timestamp
(pinned in memory) adds(pinned in memory) adds
little overheadlittle overhead


Common-case
performance

comparable to ROWA

0K

2K

4K

6K

8K

10K

12K

 60 65 70 75 80 85 90 95 100

G
E

T
 r

e
q
u
e
st

s/
se

c

Cache hit rate

quorum

0K

2K

4K

6K

8K

10K

12K

 60 65 70 75 80 85 90 95 100

G
E

T
 r

e
q
u
e
st

s/
se

c

Cache hit rate

rowa

© 2004 Armando Fox

DStore

ROWA

0

500

1000

1500

2000

2500

05001000150020002500

Node Throughput (req/sec)

S
y

s
te

m

T

h
ro

u
g

h
p

u
t

(r
e

q
/s

e
c

)

DStore R/W mix microbenchmarksDStore R/W mix microbenchmarks
 After failure, thruput restored in secondsAfter failure, thruput restored in seconds

 Throttling one brick doesnThrottling one brick doesn’’t bottleneck thet bottleneck the
systemsystem

 Online repartitioning: Online repartitioning: ““failfail”” a brick, copy a brick, copy
it, reintegrate bothit, reintegrate both

 In all cases, data available for In all cases, data available for both readsboth reads
& writes& writes throughout throughout

© 2004 Armando Fox

JAGR: Recovery microbenchmarksJAGR: Recovery microbenchmarks

 RUBiSRUBiS
 E-Bay-like appE-Bay-like app

 Has many naturallyHas many naturally
occurring faultsoccurring faults

 Running on vanillaRunning on vanilla
JBoss gives poorJBoss gives poor
availabilityavailability
 4 concurrent clients4 concurrent clients

causes deadlockcauses deadlock

 JAGR automaticallyJAGR automatically
recovers every timerecovers every time

© 2004 Armando Fox

EJB
EJB

EJB EJB

EJB

EJB

J2EE Application

JAGR: Modifing JBossJAGR: Modifing JBoss

Application Server (JBoss)

Persistence tier

Fault
Injector

Recovery
Agent

Internal
Monitors

Recovery
Map

External
Monitors

Servlet/JSP
C

ontainer
H

ttp Server

Stall
Proxy

Client
Requests

Before deployment, useBefore deployment, use
controlled faults to buildcontrolled faults to build
Recovery MapRecovery Map

Builds fault propagationBuilds fault propagation
map, based on observedmap, based on observed
failuresfailures

Restart single EJBs,Restart single EJBs,
redeploy apps, or restartredeploy apps, or restart
whole app-serverwhole app-server

ExcMon: detects JavaExcMon: detects Java
exceptions in theexceptions in the
application & app serverapplication & app server

PPMon: detectsPPMon: detects
““anomalousanomalous”” behaviors behaviors

E2EMon: detects app-E2EMon: detects app-
specific, end-to-end failuresspecific, end-to-end failures
in requests (also app-genericin requests (also app-generic
using character histograms)using character histograms)

Stalls userStalls user
requests duringrequests during
recoveryrecovery

