
November 2004
All Things
Are Connected,
p. 10

Web Services,
p. 14

Online
Collaboration
Products,
p. 106

Innovative Technology for Computer Professionals

h
tt

p
:/

/w
w

w
.c

o
m

p
u

te
r.

o
rg

0018-9162/04/$20.00 © 2004 IEEE60 Computer

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Recovery-Oriented
Computing: Building
Multitier Dependability

P ersonal computers often crash or freeze.
Web sites become unavailable when we
most need them. Upgrades can render sys-
tems unusable, and human operators reg-
ularly discombobulate the systems they

administer. Clearly, software has not yet evolved to
deal with our world. It is no surprise that system
management dominates the total ownership costs
of running large software infrastructures, with a
large fraction of this cost going toward preventing
and managing failures.

In a joint research effort of Stanford University
and the University of California, Berkeley, the
Recovery-Oriented Computing project studied tech-
niques to help systems quickly recover from failures
that are inevitable. ROC research was geared
mainly toward Internet services because they pre-
sent unique challenges: They can grow to immense
proportions—Google has more than 100,000 com-
pute nodes; they are subject to perpetual evolution,
with weekly software updates being common; they
face workloads that can vary by orders of magni-
tude over the course of a day; and, finally, within
this dynamic environment, they are expected to run
24/7. We believe that most of what we learned from
Internet services can also be applied to desktops,
smaller network services, and other computing envi-
ronments.

Our work builds on a vast body of computer
dependability research. Daniel Siewiorek and Robert
Swarz provide a standard text in this area, now in
its third edition.1 We approach dependability from
a slightly different angle, however, to meet the

constraints of rapidly evolving applications in the
Internet service environment. ROC assumes that
software will continue to be plagued by problems
difficult to eradicate: elusive bugs, complex archi-
tectures, human operators subject to slips and lapses,
unpredictable workloads, and so on. Regarding fail-
ures as a fact of life, ROC focuses on building sys-
tems that recover fast when a fault does strike, rather
than on trying to prevent failures.

We implemented two building blocks for recov-
ery, microreboot and system-level undo, which have
proven very effective in handling failure. We are
also developing benchmarks for quantifying the
impact of these effects on system dependability.

RECOVERY DESIGN SPACE
A common formula defines system availability in

terms of the relationship between mean-time-to-fail
and mean-time-to-recover:

Availability = MTTF / (MTTF + MTTR)

Given the progress made in increasing MTTF over
the past decades, we argue that today it would be
easier to approach 100 percent availability if we
tried to reduce MTTR close to zero (very short
recovery times) rather than continue striving to take
MTTF to infinity (hardly ever fail); that is,

Of course, recovery must be not only fast but also
correct. Like any software, a recovery mechanism

lim
MTTR→ 0

(availability) = 100%

Building systems to recover fast may be more productive than aiming for
systems that never fail. Because recovery is not immune to failure either,
the authors advocate multiple lines of defense in managing failures.

George
Candea
Stanford University

Aaron B.
Brown
IBM T.J. Watson
Research Center

Armando
Fox
Stanford University

David
Patterson
University of
California, Berkeley

November 2004 61

cannot be flawless. Recovery-oriented systems must
therefore defend themselves in depth, with multiple
layers of recovery that can back each other up. We
believe the design space for recovery spans two
principal axes: cost of recovery and breadth (per-
centage) of recoverable failures.

Figure 1 illustrates this design space; we cast our
work as an exploration of it.

The ROC project spanned several areas, ranging
from fault detection and recovery to a survey of real-
world, deployed system failures. Over the course of
three years, we learned four general lessons that will
help guide our design of future systems.

Fast recovery requires safeguarding system state.
Recovering a failed system means bringing it back
to the point at which it can serve its function at least
as well as it did before failing. The system’s state—
the union of all the data the program uses to guide
its operation, whether contained in a separate data-
base on a remote server, in a file system, or inside its
in-memory data structures—ultimately determines
its ability to serve requests. To a great extent the cost
of recovery is determined by how long it takes to
reconstruct the system’s state after failure and how
much state gets lost before or during recovery.

For example, a simple Web server is a largely
“stateless” system that serves data from a mostly
read-only file system. Individual HTTP requests do
not require the server to maintain state on their
behalf, so the server can be rebooted safely. Sub-
sequent HTTP requests will not know the server
was restarted.

On the other hand, an operating system reads
and modifies a variety of state on behalf of the
applications it runs. Discarding this state would
render the entire system useless. Accordingly, an
OS is a very “stateful” program. Recovering from
a problem such as a corrupt Windows registry
could require reinstalling the entire operating
system and applications, in effect recreating a
large amount of state, which takes from hours to
many days.

Most dependable systems rely on some form of
rollback recovery,2 using state checkpoints or activ-
ity logs to restore system state after a failure. Because
rollback can be expensive, the key to fast recovery is
protecting this state from corruption by safeguard-
ing as much of it as possible from the program logic.

Overall dependability increases with the level of
separation of data management from application
logic, as long as programs access the data through
well-defined, high-level interfaces. The inventors of
databases noticed this property decades ago and
leveraged it for persistent state.

Fine-grained workloads speed recovery. Another
aspect influencing system recovery is the workload
it serves. If the system designer can break the work-
load into small units that are independent of each
other, then recovering from failure requires little
state reconstruction, thus making recovery fast.

When rebooting a simple Web server, the only
lost state is the HTTP requests that were in-flight at
the time of the reboot. HTTP’s stateless nature,
combined with the client’s ability to retry, preserves
correctness across short-lived failures.

Implementing recovery in the platform is cost-effective.
The two ROC prototypes described here imple-
ment recovery in the underlying platform rather
than the applications. Although it is somewhat
more difficult, this approach can leverage devel-
oped and tested recovery code across multiple
applications, both present and forthcoming.

You can’t improve what you can’t measure. An impor-
tant goal throughout the ROC project has been to
develop suitable ways to benchmark the depend-
ability of our systems, including the people who
operate the systems and those who use them. The
process of defining such benchmarks taught us
where the systems’ vulnerable points reside, and
using the benchmarks helped guide our designs.

An added benefit of our benchmarking efforts
was the ability to make a more persuasive, quanti-
tative case for the recovery techniques and para-
digms we developed, thus enhancing the prospects
of their adoption in real systems.

WHEN IN DOUBT, MICROREBOOT
A first-line-of-defense recovery mechanism

should be low cost and low overhead, with a good
probability of repairing the problem, but a low
opportunity cost in the event it doesn’t work.

In industry, rebooting is generally accepted as a
universal form of recovery for many software fail-
ures, even when the exact causes of failure are
unknown. Rebooting provides a high-confidence
way to reclaim stale or leaked resources. System
administrators can attempt a reboot whether or not

Percentage of failures cured

Co
st

 o
f r

ec
ov

er
y

System-
level
undo

Microreboot

Ad hoc manual
repair

Spect
rum

Reboot

Figure 1. Software
recovery design
space. One axis
captures the
amount of breadth
a technique can
achieve in terms of
failures it cures; the
other axis refers to
the general cost of
employing that
technique. In a
sense, these axes
capture a cost-
benefit ratio for
recovery.

62 Computer

the target system’s software is responding.
Rebooting is easy to implement and automate,
and it returns software to the start state, which
is often its best-understood and best-tested
state. We therefore saw crash-restarting as a
promising candidate for first-line recovery.

Microreboot: A technique for cheap
recovery

Unfortunately, recovering from an unex-
pected crash can take a long time if extensive state
reconstruction is required. Moreover, in systems
that are not crash-safe, unexpected reboots can
cause data loss.

A microreboot is the selective crash-restart of
only those parts of a system that trigger the
observed failure.3 This technique aims to preserve
the recovery advantages of rebooting while miti-
gating the drawbacks. In general, a small subset of
components is often responsible for a global sys-
tem failure, thus making the microreboot an effec-
tive technique for system-global recovery.

By localizing recovery to a small subset of compo-
nents, microrebooting minimizes the amount of state
loss and reconstruction. To further reduce state loss,
we segregated the state that must survive the microre-
boot into separate state repositories that are them-
selves crash-safe. This separates the problem of data
recovery from application-logic recovery and lets us
perform the latter at finer grain than the process level.

We prototyped this approach in JBoss, a popular
open-source application server written in Java.
JBoss supports Java 2 Enterprise Edition, which
allowed us to exploit J2EE’s component-based pro-
gramming framework. The JBoss modifications
allowed selective microrebooting of small groups
of Enterprise JavaBeans, the RPC-like handlers that
make up a J2EE application.

Not surprisingly, microrebooting turned out to
be one to two orders of magnitude faster than a full
process restart: Microrebooting an EJB takes less
than 600 milliseconds, whereas an application
server process restart takes almost 20 seconds.3 A
microreboot also loses much less user work than a
process restart.

The J2EE model stores persistent data in a rela-
tional database. We further modified JBoss so that
applications store their session state—that is, state
that must persist between a user’s login and logout,
but is not needed after the session ends—in a ded-
icated crash-safe state repository that is optimized
for fast recovery. Session state typically lasts tens
of minutes; most application servers store it in
memory, so the session is lost if the server process

crashes. Externalizing session state this way caused
throughput to drop by less than 2 percent, and the
increase in average request latency was not per-
ceptible to humans.

Microreboots are largely as effective as full re-
boots but 30 times faster. In our prototype, micro-
reboots recover from a large category of failures
for which system administrators normally restart
the application, including deadlocked or hung
threads, memory leaks, and corrupt volatile data.

If a component microreboot doesn’t correct the
failure, we can progressively restart larger subsets
of components. This is like navigating upward on
Figure 1’s spectrum to find the most advantageous
cost-benefit ratio.

Lessons learned from microrebooting
Our prototype implementation yielded several

lessons regarding its use in a recovery strategy.
Componentized software is synergistic with micro-

reboots. In our prototype, we took advantage of
J2EE’s component framework and added a few
new features.

Because the component-level reboot time is
determined by how long the system takes to restart
the component and the component takes to reini-
tialize, a microrebootable application should aim
for components that are as small as possible. In the
case of J2EE, applications are composed of EJBs
that communicate through fairly narrow applica-
tion programming interfaces (APIs), allowing the
technique to exploit EJB boundaries as natural fine-
grained recovery boundaries.

To tolerate a component microreboot gracefully,
a modularized system must have loosely coupled
components with well-defined, enforced bound-
aries. Direct references, such as pointers, cannot
span these boundaries; the system can use either a
state repository or the application platform to
maintain indirect, microreboot-safe references out-
side the components.

This design approach shifts the burden of data
management from the often-inexperienced appli-
cation writers to the specialists who develop state
repositories. This leads to crash-only software
(http:// crash.stanford.edu)—software that is both
crash-safe and fast-rebooting.

Fine-grained recovery requires accurate fault local-
ization. Unlike whole-process restarts, fine-grained
rebooting requires knowledge of which compo-
nents are faulty, so the system must identify the
location of faults more accurately.

While developing detection and localization tools
for rapidly evolving systems may seem difficult, our

Microreboots
are largely
as effective

as full reboots,
but 30 times faster.

November 2004 63

colleagues built an application-generic fault detec-
tion and localization program. Pinpoint (http://
pinpoint.stanford.edu) uses statistical learning tech-
niques to detect and localize likely application-level
failures in component-based Internet services.

Assuming that most of the system is working
most of the time, Pinpoint learns a baseline model
of system behavior. During system operation, it
looks for anomalies (relative to this model) in low-
level behaviors that are likely to reflect high-level
application faults, and it correlates these anomalies
to their potential causes (software components)
within the system. While Pinpoint does exhibit
occasional false positives, the integration of
Pinpoint and microreboots offers higher availabil-
ity than recovery based on full process restart.

Nonintrusive recovery improves failure management.
Microrebooting just the necessary components
reduces not only recovery time but also its effects
on the system’s end users.

Figure 2 illustrates this point, showing compar-
ative perceived availability. For each point t along
the horizontal axis, a solid vertical bar indicates
that, at time t, no end user perceived the service as
unavailable. A gap in an interval [t1, t2] indicates
that some request, whose processing spanned [t1,
t2] in time, eventually failed, suggesting the site was
down. When recovering with a microreboot, the
user population is largely insulated from the effects
of recovery, with close to no visible global down-
time.

In a cluster-based system, the cost of failing over
to a good node in the face of failure is nontrivial, as
it often involves state transfer, changes in load
dynamics, and so on. Cheap recovery can simplify
failure management. In some configurations, we
found it more effective to first microreboot the
failed node, and then initiate failover only if the
microreboot did not cure the failure. The benefits
of not failing over outweighed the brief function-
ality disruption of a microreboot.3

A software tonic. When the cost of making a mis-
take in failure detection is negligible, automated
recovery can use microreboots regardless of what
the failure is. Even if the microreboot does not
recover the system, but some other subsequent
recovery mechanism does, the microreboot
attempt adds only negligible time to the recovery
process. For instance, in our system, microreboot-
ing with up to a 98 percent false positive rate main-
tained higher availability than full restarts with no
false positives.

Microrebooting is not a cure-all. Component-level
crash-restart works best on transient hardware and

software failures triggered by so-called “Heisen-
bugs.” It is also effective against resource leaks and
corruption of volatile data structures.

These bug classes are important and difficult to
prevent with today’s quality assurance processes,
but do not represent all system failures. For some
failure types, such as reproducible software bugs
and corruption of persistent data, rebooting may
not provide a fix; for others, such as misconfigura-
tions or botched upgrades, it is never a fix.

THE BACKUP PLAN: UNDO/REDO
Software is not the only culprit in bringing large-

scale software down; human errors also contribute
to a significant fraction of downtime. These prob-
lems include incorrectly performed upgrades, con-
figuration changes that unintentionally disable or
degrade service, inopportune component shut-
downs, and accidentally deleted data.

Undo/redo prototype
To extend recovery to all these failure types, we

added a second line of defense based on the
undo/redo pattern. Much like the undo feature in
a word processor, our system-level undo4 provides
a more comprehensive and broadly applicable
method for recovering from state-corrupting fail-
ure and human-operator error. Undo covers the
operating system as well as user applications, so it
incurs higher overhead—in the sense illustrated in
Figure 1. It applies in situations that rebooting can-
not fix and the costs—for example, of not recover-
ing data—can be significantly higher than the possi-
bly high costs of undo.

User account
Search

Browse/view
Bid/buy/sell

1,195 1,200 1,205 1,210 1,215 1,220 1,225 1,230 1,235
Timeline (seconds)(b)

(a)

Client-perceived availability (microreboot)

Client-perceived availability (process restart)

User account
Search

Browse/view
Bid/buy/sell

1,195 1,200 1,205 1,210 1,215 1,220 1,225 1,230 1,235
Timeline (seconds)

Figure 2. Service
functionality
availability. The
graphs illustrate
end-user-perceived
availability of an
online auction
service’s four
functional groups
during automated
recovery from a
user account
component failure
with (a) process
restart and (b)
microreboot.

64 Computer

Figure 3 shows our prototype system. It wraps
an e-mail server with an undo/redo layer that uses
a proxy to log all external interactions with the
server, such as e-mail delivery and mailbox manip-
ulation. A rewindable storage layer offers undo
functionality that can quickly restore a prior snap-
shot of all system state, including configuration
state and user data as well as OS and application
binaries. The redo functionality replays the logged
external interactions via the proxy, thereby restor-
ing end-user work lost during the undo operation
while respecting the undo operation’s system-level
repairs.

For example, an operator who misconfigured a
global spam filter to drop legitimate mail could use
undo to revert the configuration change, then use
redo to replay the lost e-mail traffic, thus restoring
the dropped messages to their rightful mailboxes.

Because external interactions are likely to have
different behavior when reexecuted after the undo
operation, the undo/redo system provides a frame-
work for detecting and handling such paradoxes
via operator-supplied and application-specific con-
sistency and compensation models.

Our benchmark experiments to assess the effec-
tiveness of the undo/redo recovery mechanism have
demonstrated its recovery power for state-cor-
rupting human errors like failed software upgrades
and misconfigurations. The changes added a small
amount of runtime overhead in our prototype—
several hundred milliseconds extra latency on some
data-intensive e-mail commands. This did not affect
throughput below the e-mail server’s saturation
point but reduced the saturation point by about 17
percent. We believe that minor architectural
changes to our prototype will eliminate much of
this overhead.

Lessons learned from undo/redo
While system-level undo is a more expensive level

of defense than microrebooting, it can recover from
a broader range of failures, including those induced
by human operators.

Assimilating new recovery paradigms is hard. The
greatest challenge in constructing and deploying
system-level undo turned out not to be technical,
but pedagogical. The rich undo/redo model that
our prototype implementation supports requires a
more sophisticated mental model than the simple
undo found in productivity applications. Ex-
plaining this model to skeptical prospective system
users—and indeed convincing ourselves that it
could handle all paradox cases and could be
trusted—proved an unexpected challenge.

Following in the footsteps of early transaction
systems, we introduced the spheres of undo struc-
turing concept. These spheres are “bubbles” of
space and time that encapsulate undoable state,
help visualize the temporal relationships between
external observers and the state subject to undo/
redo, and provide a mechanism for identifying all
potential paradox situations.

The spheres proved to be a powerful tool for
visualizing and reasoning about complex undo
models, explaining them to potential users and sug-
gesting undo/redo recovery extensions to other
classes of systems, such as desktop computers and
distributed server environments.

Identifying suitable target systems. A key question
we faced when developing system-level undo/redo
was how broadly we could apply it; this boils
down to understanding the space of applications
that can tolerate paradoxes. In addition to e-mail,
we expect this approach to work well for other
user-facing applications such as auctions, shop-
ping, group calendar, even online banking. Many
of these applications grew out of manual, human-
driven processes and thus already include integral
mechanisms for coping with the inherent incon-
sistency of complex real-world interactions.

Only a limited set of services, like block-level
storage or embedded real-time control, are not
good targets for undo/redo recovery because they
either target other computers as end users or create
immediate, irreversible changes to the external
environment. The former cannot tolerate para-
doxes without an extended model that supports
distributed undo via multiple interacting spheres.
In the latter case, compensation for paradoxes is
unrealistic or impractically expensive.

Black-box recovery is expensive, but often worth it. We
initially decided to treat the application service
being recovered as a black box so that we could
use undo/redo to recover from failed upgrades of
the e-mail server itself and from misconfigurations
of external tools like spam filters. We split the
undo/redo system into two parts, an application-

Undo proxy

Application
service
includes

• User state
• Application
• OS

Rewindable
storage

User
operation

log

Control
UI

User

Undo
manager

Ops

Control

Figure 3. Undo/redo
system design. The
system wraps the
application service,
and the rewindable
storage provides
undo; the proxy logs
users’ requests and
can replay them as
part of redo. The
undo manager
coordinates the
system timeline.

independent core and a set of application-specific
plug-ins to handle the e-mail proxying tasks and
protocol knowledge.

Leveraging data and code already present in
the e-mail server implementation would have
greatly reduced the overall implementation com-
plexity, as well as significantly reduced overhead.
Alternatively, if the e-mail server had provided
the needed hooks, we could have kept the black-
box architecture while still reducing implementa-
tion complexity.

We believe that a fruitful direction of future
research in undo/redo-based recovery will be to
investigate the tradeoffs between recovery power
and overhead at different points along the spectrum
from our black-box approach to complete integra-
tion of undo/redo recovery within the application
service itself.

SUITABLE DEPENDABILITY BENCHMARKS
A dependability benchmark consists of a system

specification, a faultload, a workload, and a met-
ric. When we found that no standard faultload
existed for benchmarking the dependability of
Internet services, we developed one through dis-
cussion with industrial experts.

Workloads, like faultloads, are also domain-
specific. An e-shopping workload is different from
an online auction workload, since only certain
sequences of possible interactions with a particu-
lar service are meaningful; for example, a user must
put an item in the shopping cart before paying for
it. We modeled human end users using a Markov
chain with states corresponding to end-user oper-
ations, similar to the approach used by Emmanuel
Cecchet and coauthors.5

What metric is appropriate for an Internet ser-
vice dependability benchmark?

Performability6 is a good metric because it cap-
tures both service performance and availability.
Unfortunately, it does not accurately distinguish
between slow operations that involve many server
resources, such as purchasing an item, and fast oper-
ations like accessing a static homepage. If the part
of the system that handles heavyweight operations
fails, the throughput of successful operations—and
therefore the performability—can actually increase.
This occurs because heavyweight operations fail
immediately, rather than taking a long time to com-
plete successfully, thus they allow numerous light-
weight but “less useful” operations to complete
instead.

Furthermore, performability does not capture the
fact that user interactions are actually sequences of

correlated operations that must succeed atomically
to satisfy the user. Filling out payment and ship-
ping forms is useless if the final “place order” oper-
ation fails.

We evaluated availability using action-weighted
throughput.3 While similar to performability, this
metric accounts for typical user interaction with a
Web-based service as well as the different weights
of different operations.

We assume that a user session begins with a login
operation and ends with an explicit logout or aban-
donment of the site. Each session consists of a
sequence of user actions; each user action is a
sequence of operations; each operation in an action
must succeed for that user action to be considered
successful. When an operation fails, the entire user
action fails. When an operation succeeds, it is
counted as successful, unless it belongs to a user
action that subsequently fails.

Figure 4 shows results for an evaluation of an
online auction site using action-weighted through-
put. In this case, a user action might take the form,
“Search for a green SF Giants jersey and place a
$20 bid on it.” Individual user operations are the
HTTP requests needed to complete this action.

We injected a sequence of three faults into the
system every 10 minutes. Microrebooting much
more effectively keeps the number of successfully
served requests up and failed requests down. The
tail of failed requests extending to the left of each
injection point is composed of requests that were
retroactively counted as failed once their contain-
ing action failed. Overall, 11,752 requests failed
when recovering with a process restart, shown in
the top graph; 233 requests failed when recovering
by microrebooting one or more EJBs, shown in the
bottom graph.

Action-weighted throughput takes the end user
into account, but still does not provide quantita-
tive accounting for the system administrators. The

November 2004 65

Figure 4. Action-
weighted
throughput
measures end-user
effects for (a) full
restart and (b)
component-level
microreboot
recoveries from
three injected
faults.

Action-weighted throughput (microreboot)

0
 20
 40
 60
 80

 100
 120

0 5 10 15 20 25 30 35 40

T a
w

 (r
es

p/
se

c)

Timeline (minutes)(a)

(b)

Action-weighted throughput (process restart)

0
 20
 40
 60
 80

 100
 120

0 5 10 15 20 25 30 35 40

T a
w

 (r
es

p/
se

c)

Timeline (minutes)

Correctly satisfied requests
Failed requests

66 Computer

impact of human operator actions certainly trans-
lates into effects that are visible to the end user, but
we needed a way to correlate the cause and
observed effect, so we developed a new form of
human-aware dependability benchmark4 repre-
senting a cross between a traditional benchmark
and a user study. While the human component
makes this benchmark significantly more expensive
than a traditional one, careful selection of the
human participants and experimental protocol can
minimize the extra cost.

We applied this human-aware benchmark to
measure the effectiveness of our system-level undo
prototype. We benchmarked the correctness and
availability of the e-mail server with and without
the undo recovery mechanism under two state-cor-
rupting failure scenarios, using 12 graduate stu-
dent subjects to perform recovery in seven case
scenarios.

Figure 5 shows the subset of results demonstrat-
ing the dependability benefits (and costs) in these
undo/redo recovery scenarios. In each case, the
number of e-mail messages handled incorrectly
decreased significantly with undo/redo. In some
cases not shown here, undo-based recovery reduced
availability compared to the baseline, due to its
complex paradigm. This suggests we can further
improve our prototype implementation.

O ur work on microreboots was driven primar-
ily by a desire to decrease the mean time to
recover as a way to improve availability. In

the background, we also wanted to improve recov-
ery predictability. This has generated a new direc-
tion of research to improve the predictability of
system behavior as a whole. We are developing a
harness that uses component-level enforcement of
invariants on resource usage, input, and output to
maintain the system within the bounds of known
good behavior (http://predictable.stanford.edu/).

We have also identified promising directions for
continuing the undo/redo work. In addition to
investigating the tradeoffs between black-box and
white-box implementations, we are exploring the

broader undo/redo application space. We are using
the “spheres of undo” structuring concept to look
at providing system-level undo in more complex
systems—such as distributed services in which trust
issues and multiway communication raise interest-
ing complications with undo/redo and systems that
contain hierarchies of configuration state, such as
Windows-based desktop systems.

With the possible exception of human errors,
noticing an error often takes much longer than
diagnosing it, which in turn takes longer than a
repair, especially if the repair is as low-cost as
microreboot. We therefore see fault detection and
diagnosis as an open challenge. We are starting a
broader research project to systematically investi-
gate the combination of statistical learning theory
and simple fast recovery as a methodology for
building large-scale self-recovering systems (http://
rads.cs.berkeley.edu/). �

Acknowledgments
The ROC project is comprised of the work of

many graduate students at both Stanford and UC
Berkeley, in addition to the authors of this article.
We especially want to acknowledge the contribu-
tions of senior ROC students Mike Chen, James
Cutler, Emre Kiciman, and David Oppenheimer,
as well as Pete Broadwell, Andy Huang, and Ben
Ling. More information about ROC is avail-
able at http://roc.cs.berkeley.edu/ and http://roc.
stanford.edu/.

References
1. D.P. Siewiorek and R.S. Swarz, Reliable Computer

Systems: Design and Evaluation, 3rd ed., AK Peters,
1998.

2. E.N.M. Elnozahy et al., “A Survey of Rollback-
Recovery Protocols in Message-Passing Systems,”
ACM Computing Surveys, Sept. 2002, pp. 275-408.

3. G. Candea et al., “Microreboot—A Technique for
Cheap Recovery,” Proc. 6th Symp. Operating Sys-
tems Design and Implementation (OSDI), Usenix
Assoc., 2004, pp. 31-44.

4. A.B. Brown and D.A. Patterson, “Undo for Opera-
tors: Building an Undoable E-mail Store,” Proc.
Usenix Ann. Tech. Conf., Usenix Assoc., 2003, pp.
1-14.

5. E. Cecchet, J. Marguerite, and W. Zwaenepoel, “Per-
formance and Scalability of EJB Applications,” Proc.
17th Conf. Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 02), ACM
Press, 2002, pp. 246-261.

0

50

100

150

200

S1 S2 S3 S4 S5 S6 S7

of

 m
es

sa
ge

s
ha

nd
le

d
in

co
rr

ec
tly Baseline

Undo available

Case scenarios

Figure 5.
Benchmarking
the human
administrator
component. For
each of seven
scenarios, the
graph plots
correctness and
availability results
with and without
the undo recovery
tool.

6. J.F. Meyer, “On Evaluating the Performability of
Degradable Computer Systems,” IEEE Trans. Com-
puters, Aug. 1980, pp. 720-731.

George Candea is in the final year of his PhD pro-
gram in computer science at Stanford University.
His research interests center on large-scale software
system dependability, including practical imple-
mentation of microreboots as a building block for
high availability and the “crash-only software”
design philosophy for applications that crash safely
and recover fast. Candea received an SB and MEng
in computer science from the Massachusetts Insti-
tute of Technology. Contact him through the Web
at www.cs.stanford.edu/~candea.

Aaron B. Brown is a research staff member in the
Adaptive Systems Department at IBM’s T.J. Wat-
son Research Center. He completed the work
reported here while at the University of California,
Berkeley. His research interests include quantify-
ing and reducing IT management complexity,

improving the dependability of business systems,
and benchmarking nontraditional aspects of IT sys-
tems. Brown received a PhD in computer science
from the University of California, Berkeley. Con-
tact him at abbrown@us.ibm.com.

Armando Fox is an assistant professor of computer
science at Stanford University. His research inter-
ests include mobile computing, Internet services,
and system dependability. Fox received a PhD in
computer science from the University of Califor-
nia, Berkeley. Contact him at fox@cs.stanford.edu.

David Patterson holds the Pardee Chair of Com-
puter Science at the University of California, Berke-
ley. He led the design and implementation of the
RISC architecture as well as the RAID storage pro-
ject. Patterson received a PhD in electrical engi-
neering from the University of California, Los
Angeles. He is president of the ACM and a member
of the National Academy of Engineering and the
IEEE. Contact him at patterson@cs.berkeley.edu.

November 2004 67

