Addressing Software Dependability
With Statistical & Machine Learning:
Successes, Challenges, and an Agenda

ICSE 2005 State-of-the-Art
Keynote

by Armando Fox and a cast of tens

v1.5, 18-May-2005

Outline

= Background: Building on a "ROC foundation” (Recovery-
Oriented Computing)

= Example-driven overview: using machine learning and
statistical induction to attack dependability problems

= Research agenda, fundamental challenges, pitfalls

= Architectural decisions and recoverability

© 2005 Armando Fox

Software problems in production Internet services

= Complexity & churn breed high impact “Heisenbugs”
= majority of SW bugs in live systems are environment-dependent

= application bugs result in 28% of non-operator-related downtime
for large Internet sites

= >90% of typical corporate IT budget is maintenance/operations

= Fast detection & rapid recovery are main concern

= Some Heisenbugs cause user-visible application failures before
they are detected by site monitors (eg Tellme Networks)

= Gross site metrics track only the delayed effect of bugs
= Management cost dominates TCO => interest in “autonomic”

= Qur ability to build & deploy complex systems appears to
exceed our ability to understand how they work

© 2005 Armando Fox

History: Recovery-Oriented Computing

= ROC philosophy (“Peres’s Law"):

“If a problem has no solution, it may not be a problem, but a fact; not to
be solved, but to be coped with over time”

Israeli foreign minister Shimon Peres

= Failures (hardware, software, operator-induced) are a fact;
recovery is how we cope with them over time

= Availabilty = MTTF/MTBF= MTTF / (MTTF + MTTR)
= Making MTTR<<MTTF is just as valuable as increasing MTTF

= Major research areas
= Fast, generic failure detection and diagnosis (Pinpoint)

= Fast recovery techniques and design-for-recovery
(microrebooting) - prototyped in J2EE

= System-wide Undo for operators - prototyped in IMAP server

© 2005 Armando Fox

Lesson: other uses for fast recovery

= Fast repair tolerates false positives
Keep MTTR below “human perception threshold”

Example: microrebooting - if can serve a request in <8sec, user doesn't
see the failure

Can be tried even if not sure it’s necessary, since cost is so low

= Human operators are both a major cause of failures and a major
agent of recovery for non-transient failures

Lack of data is not the problem: “driving a car by looking through a
magnifying glass” effect

Rapidly recognizing and recovering from mistakes; intuition/experience
about when something’s not right with the system

Tools for operators should leverage humans’ strengths to make sense of
all this data

© 2005 Armando Fox

Lesson: power of statistical techniques

= Want to talk about “self-*" system goals at high level of
abstraction (“response time less than N seconds”, etc)

= But these high-level properties are emergent from
collections of low-level, directly measurable behaviors

Statistical/Machine Learning techniques can help:
= You have lots of raw data

= You have reason to believe the raw data is related to
some high-level effect you're interested in

= You lack a model of what that relationship is

© 2005 Armando Fox

SLT applied to problem detection/localization

= What kinds of pattern-finding models are possible?

Attribution: what low-level metrics correlate with a high-level behavior?
Assumption: correlations may indicate root causes

Assumption: all required metrics are captured, and model is capable
of finding sophisticated correlations

Clustering: group items that are “similar” according to some distance
metric

Assumption: items in same cluster share some “semantic” similarity

Anomaly detection: find outliers according to some socring function of
anomalousness

Assumption: anomalous may indicate abnormal/bad behavior

= A template for applying SLT to problem detection/localization
What directly measurable and relevant “sensors” do we have?

What kind of manipulation on the sensor values (classification,
clustering, etc.) might expose the pattern?

Tune thresholds/parameters, learn what you did wrong
Repeat till publication deadline © 2005 Armando Fox

Caveats

= Correlation != Causation
= But it can help a lot, and sometimes the best we can do

= “All models are wrong, but some models are useful”
= What assumptions are embedded in mapping model to system?

= Without operator’s trust and assistance, we are lost

© 2005 Armando Fox

Example: Metric attribution*

= System operator’s concern: keep response time below
some service-level objective (SLO)

= If SLO violated, find out why, and fix the problem

= Insight: SLO violation is probably a function of several
“low-level” directly measurable metrics

= But which ones??

F

Average AT = 100msec

0’}

.1u¢.

TR

BT o M o, e D e o, e EBC D B D MR oo
o : x 3 o DO O oo O o o

{5 ST
i

l
]

DEL IR E

bl

10

—
i

=15
e

u|

i

AMBRAEALR]

1 1 1 1
0 500 1000 1500 2000 250
Time

* S. Zhang, I. Cohen, M. Goldszmidt, T. Kelly, J. Symons (HP Labs), A. Fox, DSN 2005. © 2005 Armando Fox

Binary Classification & Bayesian networks

= Goal: given low-level sensor measurement vector M, correctly

predict whether system will be in compliance or non-compliance with
SLO

Binary classification is easier than predicting actual latency from metrics!

Training the network is supervised learning since we know (can directly
measure) the correct value of S corresponding to current M

= Use a Bayesian network to represent joint probability distribution
P(S,M) (S is either s+ or s-)
Because a joint distribution can be inverted using Bayes’s rule to obtain
P(M|S), or P(m;|m;,m,,...m,,S)

= A sensor value mis “implicated” in a violation if P(m|s-) > P(m|s+)

High classification accuracy increases confidence in whether attribution
is “meaningful”

© 2005 Armando Fox

Results & pitfalls

How well did it work?

= No single metric discriminate: -
SLO violations very well

= But collections of 3-8 metrics
do very well

= Balanced accuracy of 90-95% :

A DR 1 A RS

e

nseed pikn
Alahim

& oM kg ey

G W TG i i

HELETE

Workload LRG0 LR O D S D L T ¢ =

0 o e e e —— =

= Training: ~80 data points
each of compliance and

rabai A8 ERU 1 UEEHR TIE

non-compliance (seconds of operation)

= Assumes we're capturing superset of required metrics

= Attribution is hard to verify empirically

* Figure: from I. Cohen, M. Goldszmidt et al., OSDI 2004

© 2005 Armando Fox

Failure detection as anomaly detection*

= Problem: detect non-failstop application errors, e.q.
shopping cart broken

= Insight: if problems are rare, we can learn “normal”
behavior; “"anomalous” behavior may mean problem

= Unsupervised learning, since goal is to infer problems we
can't detect directly

= Approach: represent path of each f)
request through application modules O O O O

= a parse tree in a probabilistic grammar |
that has a certain probability of O O O O

generating any given “sentence”
00 00

= Rarely-generated sentences anomalous

* E. Kiciman and A. Fox, IEEE Trans. Neural Networks, to appear 2005 © 2005 Armando Fox

Results and pitfalls

Detect 107 out of 122 injected failures, vs. 88 for existing generic
techniques (15.5% better, but real impact is on downtime)

Supervised learning w/recall and precision used for evaluation

Impact of false positives

Really 2 kinds: algorithmic
and semantic

Implication: cost of acting on
false positive must be low
(e.g. microreboot)

Assumption: “most things work
right most of the time”

Num requests

100

80 |-

60 |-

40 |

20

0

0

I I
Successful requests emm—

Failed requests assssss

0.05

L
0.1

|
0.15

Score

Dealing with rare-but-legitimate behavior as false positive

Done entirely in middleware

0.2

© 2005 Armando Fox

Visualizing & Mining User Behavior During Site Failures*

= Idea: when site misbehaves, users notice, and change their
behaviors; use this as a “failure detector”

Quiz: what kind of learning problem is this?

= Approach: does distribution of hits to various pages match the
“historical” distribution?

each minute, compare hit counts of top N pages to hit counts over last 6
hours using Bayesian networks and 2 test

combine with visualization so operator can spot anomalies corresponding
to what the algorithms find

= Evaluation:

Which site problems could have been avoided, or to what extent could
they have been mitigated, with these techniques in place?

Ground truth evaluation of model findings: very hard

* P. Bodik, G. Friedman, H.T. Levine (Ebates.com), A. Fox, et al. In Proc. ICAC 2005. ©2005 Armando Fox

Example problem with page looping

o9l [Mormal State
] Unknown State
08| I Error State
MNB/PWL

— 0.7}
= T
< 06}
g -
2 05}t landing looping) site up,
= discovered site crashes problem
w
= 0.4
£
2 03
=T

0.2

0.1

n}

7/28 005 Armando Fox

Tiemm -

Potential Impact: Gaining Operator Trust

= Combining SLT with operator centric visualization

= faster adoption (since skeptical sysadmins can turn off the
automatic actions and just use the visualization to cross-check
results)

= earlier visual detection of potential problems, leading to faster
resolution or problem avoidance

= faster classification of false positives

= Leveraging sysadmin’s existing expertise, and augmenting her
understanding of its behavior by combining “visual pattern
recognition” with SLT

= Increasing operators’ trust in automated techniques

© 2005 Armando Fox

Results and pitfalls

= Detected all anomalies in logs provided by real site, usually hours
before administrators detected them

= Including some that administrators never detected
= Ground truth determination presents a methodological challenge in real

systems
False positive: NB vs Chi?
8 -
= “Eager” vs. “careful” —— NB with PWL
. NB with UWWL
Iearnlng 5t Chi?
- A long-lived anomaly i
or a new steady-state? i x NBIUWL
recovers

= Fundamental challenge

NB/PWL

Anomaly Score

of interpretability of "recovers”
models A
= Another case for human !
. . 1+
intervention! - \
0 1 T 1 |" ll 1 1 | E—— l1 MW

Elapsed Time (Hours)

Fundamental Challenges

= Arise from application of SLT to systems, not techniques themselves

= Validity of induced models in dynamic settings

Models are being used to make inferences over unseen and dynamically
changing data...how to evaluate their validity?

How many observations are required to induce new models?
Are thresholding, scoring, distance, etc. functions meaningful?
Supervised or unsupervised learning?

False positives/negatives will always be a fact of life

= Interaction with the human operator
Interpretability: mapping model findings onto real system elements
False positives: reduce cost through visualization and cheap recovery
Build trust of operator by combining visualization with SLT

= Real data: toward an “open source” failures & workloads database

© 2005 Armando Fox

ROC as Enabling Technology for SLT/ML

= Microreboot exemplifies “Repair as local adaptation”
= Invariant: repair actions are safe and low-cost
= safety achieved by state separation

= State storage abstraction makes guarantees tuned to the needs
of Web application state, and is itself crash-only

= Why the Web “works”

= Web workloads help: request-reply means failure propagation
distances are shorter (cf. Failure-Oblivious Computing, Rinard et
al., OSDI 2004)

= Web legacy helps: stateless protocol forced early developers to
do separate state management

= Separation of state => separation of recovery concerns (process
vsS. data)

© 2005 Armando Fox

What makes a ‘good’ architectural decision?

= Proposal: recoverability drives architectural decisions
= Favor component decoupling over performance
= Favor state segregation over performance
= Favor more and narrower abstractions for state management

= Favor machine-readable instrumentation and flexible control (not
just “-verbose” mode)

= Architectures & frameworks can help enforce
architectural decisions

= Goal: separate “process recovery” from “data recovery”
= J2EE gets some of these right, somewhat by accident

“The only problem of' dependability is state management.

All' ether problems inherit from it.™

Hope

= Commercial frameworks are providing instrumentation hooks
e.g. developer API's in IBM Websphere XD, J2EE instrumentation API’s

Opportunity for software architecture practitioners to move commercial
frameworks in the right directions

No excuse for academics to do research on “toy” platforms

= Performance impact /s tolerable
10-30%, not “factor of X" degradations, in our experiments to date

We already accept other tradeoffs, why not performance for
dependability/manageability?

Requires cultural change for both developers and site operators

No excuse for avoiding adoption on the basis of performance
arguments

= Programmers are smart -- but they make human errors -- like a
“commodity resource”. We have experience making
allowances for commodity resources.

© 2005 Armando Fox

Acknowledgments

Papers at http://www.cs.stanford.edu/~fox

= Luke Biewald, George Candea, Greg Friedman, Emre Kiciman, Steve
Zhang (Stanford)

= Peter Bodik, Michael Jordan, Gert Lanckriet, Dave Patterson, Wei Xu
(UC Berkeley)

= Ira Cohen, Moises Goldszmidt, Terence Kelly, Julie Symons (HP Labs)

= Aaron Brown (IBM Research), Joe Hellerstein (IBM Research), HT
Levine (Ebates.com), Yi-Min Wang (Microsoft Research)

= Research supported by NSF CAREER award, Microsoft, IBM, HP Labs,
NSF ITR award, and NSF Fellowships

© 2005 Armando Fox

Example: finding Registry configuration errors*

= IJdea: Many registry classes share common substructure
= Approach: use data clustering to learn these classes
= Distance metric: humber of common subkeys

= Then look for invariants over members in each class

= Ex: “For a DLL registration, the only legal values for the DLLTYPE
attribute are ‘16bit" and ‘32bit™

= Can be brute force for a “clean” registry, else thresholded

ll

GIF

Handler‘ ‘ O,p cn ‘
with ...

Handler‘ ‘ Qpen ‘
with ...

ll

*E. Kiciman, Y.M. Wang et al., 2004 Intl. Conf. on Autonomic Computing ©2005Amando Fox

