Research and Teaching Statement

Armando Fox

February 2008

Research Summary

My research focuses on both policy and mechanism for managing datacenter-scale installations (thousands of
computers) of interactive-response, Internet-resident services. “Management” includes recovery from failures, on-
demand scalability, dynamic resource allocation, and improved power efficiency. The mechanism for carrying out
these tasks is to construct software building blocks in which common operations, such as failure recovery, scaling
up/down, or reprovisioning, can be achieved by rebooting a machine (or its dual, adding a new machine and killing
the faulty one). The policy is based on the use of statistical machine learning (SML) techniques to automatically
identify and react to problems that would take too long for a human operator to diagnose manually. The ideal of
99.999% service availability corresponds to just 5 minutes of service downtime per year, which cannot be achieved
if humans must participate in every operational decision [2].

Two main themes of my previous work on Recovery-Oriented Computing (ROC) have influenced the design
of recent commercial and research systems. The first is the design stance of crash-only software [3]: since robust
software must survive unexpected crashes anyway, the crash recovery code should be the only recovery code, and any
non-crash problem (slowdown, anomalous behavior, etc.) observed during operation should be immediately coerced
to a crash failure. This is a radical design simplification that allows focusing on optimizing the performance of the
one and only recovery path. The second theme is exploiting this fast recovery by applying SML problem detection
techniques that, while more sensitive than non-SML state-of-the-art methods, have nontrivial false positive rates:
the observation is that because of the low cost of recovery, overall availability may still improve from using SML,
despite false positives.

Engineers and researchers at Amazon, Oracle, eBay, Microsoft and Google have told us they were strongly
influenced by the demonstration of these techniques, and Aster Data Systems (founded 2005) is designing its
parallel clustered database as crash-only from the ground up. Hewlett-Packard is already putting some of the SML
problem detection and diagnosis technology into its system monitoring products. The combination of SML for
analyzing log data and visualization to draw the human operator’s attention to interesting patterns in the data
was demonstrated on real failure log data from Ebates.com and remains an area of active research.

Previous Work: Lessons from Recovery-Oriented Computing

Recovery-Oriented Computing (ROC) [2] observes that a service whose mean time to failure is MTTF and whose
mean time to recovery from failure is MTTR experiences an availability A = MTTF/(MTTF+MTTR), with A =1
(ie. MTTF >> MTTR) corresponding to the ideal of zero downtime. Reducing MTTR is just as effective as
increasing MTTF to improve availability, and is an under-explored research approach despite being more consistent
with the practical experience that failures and bugs will continue to be a “fact of life” rather than a problem that
can be completely eliminated.

The ROC lesson was that a sufficient reduction in recovery time enabled the use of SML for problem deter-
mination in novel ways, detecting problems that do not generally lead to “hard failures” and are therefore often
missed by traditional techniques. To demonstrate the potential of SML, we applied path-based analysis, a family
of techniques from the natural language processing literature, to the detection of failures in Java enterprise (J2EE)
applications. The technique required no source code changes to or other knowledge of the application. Path-based
analysis was found to be 1.5x to 4x more sensitive than existing techniques [9, 5], but it exhibited false positive
rates of up to 20%. However, we had equipped our J2EE application server with our microreboot capability [4],

which allows restarting only certain parts of a failing Web application rather than the entire application, reducing
recovery time by 1-2 orders of magnitude for many common transient failures. With recovery so inexpensive,
the overall availability of the application in this scenario improved by 53%. Path-based analysis detected and
recovered from problems that would have been missed by other techniques, and the cost of its false positive rate
was outweighed by the benefit of extremely fast recovery (microrebooting).

After demonstrating the success of combining microrebooting with machine learning for stateless application
servers, we next demonstrated its feasibility for persistent storage systems by building two special-purpose proto-
types for storing Web application data [8, 10]. By using quorums and relaxing consistency, we were able to design
these systems to tolerate crashes of any machine at any time with no data loss and minimal performance loss,
and with all provisioning and maintenance operations recast as rebooting or adding/subtracting machines. We
concluded that if recovery is sufficiently cheap, it leads to a qualitative change in thinking from “normal-mode
vs. recovery-mode” to “always adapting, always recovering”. In other words, while “Reduce recovery time to
improve availability” and “build systems to be reboot-safe” may amount to codification of sound design practices,
their combination has been instrumental in bringing Statistical Machine Learning techniques to bear on systems
operational problems.

While path-based analysis was a first step in applying SML to systems problems, we next pushed the state of
the art by attempting to reduce problem diagnosis to information retrieval [11, 12]. Our idea was to identify those
specific measurable aspects of a running system that were highly correlated with undesirable system behavior, such
as violation of its service-level performance agreement, over short time intervals. By capturing the most important
measurements as a “signature” of 3 to 8 low-level metrics within each window, we could maintain a database
of “signatures” of known problems and essentially model the system as going through a sequence of operational
states captured by their respective signatures. When a new problem occurred, we would compute its signature
and use classic information retrieval techniques and metrics to compare it to the signatures of known problems in
our database. When tested on a real workload containing partially-labeled and some incorrectly-labeled training
data, we found one real problem missed by weeks of human diagnosis, and corrected an expert’s misdiagnosis of
another problem in a similar system.

Ongoing & Future Work: Extending the Lessons of ROC

My current research agenda aims to extend and generalize the ROC lessons—combining fast recovery with SML-
based analysis and detection [6]—in the design of datacenter-scale software subsystems. The crash-only approach,
in which many common operations are recast in terms of crashing, removing or adding a machine, is an ideal fit for
“hardware-as-a-service” environments such as Amazon’s Elastic Compute Cloud (EC2), in which the incremental
cost of leasing an additional (virtual) machine is near zero ($0.10-$0.80 per hour in 2008).

Applying SML to Systems Problems

Predicting resource utilization. My current work, also with HP, takes the problem of predicting resource
utilization of long-running database queries using query workload features, and maps that problem onto an in-
stance of a Kernel Canonical Correlation Analysis (KCCA) problem. While KCCA is a recent and fairly complex
SML technology, we found that simpler SML methods such as regression do a poor job of prediction, motivating
investigation of KCCA.

To our knowledge, no previous work attempts to predict the actual performance of a multi-query database work-
load. Using a real customer workload, our model predicts individual query running times to within 20% for over
85% of queries, outperforming a state-of-the-art commercial predictor and achieving R? > 0.95 in simultaneously
predicting utilization of multiple resources [7]. On investigation, a main reason we outperform the commercial
predictor is that the cardinality estimation errors that affect conventional predictors are “normalized out” by our
SML-based prediction process. Thus we believe our approach represents a fundamental advance over other perfor-
mance prediction methods. Ongoing work includes applying this approach to very large MapReduce workloads and
interactive Web applications. In addition we plan to use the KCCA models to drive synthetic workload generators.
This would allow researchers to use realistic workload data synthesized from the KCCA models of real commercial
workloads, without having to obtain sensitive or proprietary workload data directly.

Power management. Datacenter operators are interested in saving power only if there is no risk of violating
the SLA (e.g. due to slower performance from being in a lower-power mode). Our goal is therefore to construct

SML models that predict performance (i.e. SLA compliance) based on resource utilization and power state, allowing
us to put parts of the system into a lower-power state without violating the SLA. Early results using nonlinear
quantile regression [13] show that we can keep the CPU in a low-power state for a higher percentage of the time
than the CPU’s built-in power management policy (AMD PowerNow) while triggering few or none of the SLA
violations caused by the built-in policy. Our eventual goal is that a collection of such analysis tools would inform
the decisions of a “Datacenter Director” making global policy within the datacenter, in contrast to most current
approaches in which components manage their own power and often end up working at cross-purposes.

SML as a Technology. In both previous and ongoing work, we consistently find that straightforward, naive ap-
proaches to problem detection gave poor results, motivating the investigation of more sophisticated SML techniques
and algorithms. In the signatures work we demonstrated the need to use tree-augmented Bayes networks, which are
more sophisticated representations of conditional distributions than Naive Bayes; we also found that a single simple
model failed to capture the relationship between individual system performance metrics and overall SLA compli-
ance/violationmanagement of models’ lifecycles, model and process stationarity, thresholding/scoring/distance
functions, dealing with false positives, and the challenges of combining supervised with unsupervised learning. The
RAD Lab environment, mission and associated courses in progress are uniquely suited to train this next generation
of “crossover” researchers, and working towards a collaboratively-built artifact such as the Datacenter Director is
a way to keep focus on the relationships among the areas of research.

Scalable Crash-only Storage

While relational algebra created a revolution in data management and a new industry around relational database
management systems (RDBMS’s), there is little disagreement that today’s Web applications have different needs.
The ACID (atomicity, consistency, isolation, durability) guarantees provided by RDBMS'’s are stronger than needed
for most Web applications, and fully-general relational queries are more expressive than needed by many Web
applications; yet the engineering required to combine those properties in conventional RDBMS’s means that they
scale less and cost more than special-purpose storage systems that sacrifice one or more of the properties. For
example, Amazon’s Dynamo and Google’s BigTable sacrifice one or more of these properties in order to achieve
far greater scale and higher throughput than any existing RDBMS, and even our ROC storage system prototypes
relaxed ACID to facilitate crash-only design and SML-based automated monitoring.

While many “one-oftf” specialized storage systems have been built, each requires rewriting the application to
use the storage system, which explains the longevity of SQL as an implementation-independent abstraction for
describing operations on stored data. With SCADS (Scalable Consistency-Adjustable Document Store), we are
working with Facebook, the Internet Movie Database, Amazon, and eBay to capture use cases for their large-scale
distributed databases, with the goal of developing both a formalism comparable to SQL for reasoning about such
applications’ storage needs and a prototype of a “SCADS engine” that can scale to 1,000 machines on Amazon
EC2. We see an opportunity for a new abstraction with the advent of Ruby on Rails, whose Active Record
middleware layer provides an object-graph model that fits the needs of many Web applications. Given the uptake
of Ruby on Rails, a new abstraction that is near-compatible with Active Record would be much less disruptive
than a completely new programming model. We believe a formalism is needed in which to ground this abstraction,
both because it would facilitate the kinds of optimizations that today’s query optimizers perform on SQL queries
(by applying relational algebra transformations) and because it could provide an implementation-independent
specification for building future consistency-adjustable storage systems.

Helping the Operator

As observed by ROC, in many systems the largest single contributor to downtime was human operator error or
lack of proper tools to help diagnose a problem that could not be addressed automatically [1]. To create better
tools, we used SML to pre-analyze data to draw the operator’s attention to unusual patterns, combined with
visualization techniques that exploit the built-in parallel processing of the human visual system. The combination
helps operators quickly spot problems in large data sets and “grounds” their understanding of how the SML
algorithms work, leading over time to increased trust in the automated algorithms. Ongoing work in this area
includes combining text mining of applications’ console logs, analysis of the source code, and visualization, to
help spot rarely-occurring patterns or events in the logs that might be indicators of a failure or provide useful
forensic evidence in tracking down intermittent failures. For our initial efforts we are using real console logs from

a Java-based production search engine. In one instance our prototype helped identify the cause of one bug that
took weeks of manual debugging. In another instance text mining of the logs would have focused human attention
on the subsystem containing the actual bug, whereas in the absence of this information the operators’ intuition
had led him to focus attention on a different subsystem that turned out not to be faulty. We are in the process of
applying this to other large-scale back-end services such as text search and extending the techniques to languages
other than Java.

Teaching

I strive to inspire passion through teaching by connecting the material both to cutting-edge research and to the
“real world”. While I have taught core courses in systems, software and architecture, below are some courses I
think have had particular impact.

For graduate students: Graduate-level project courses, including CS241 (Internet Services) at Stanford and
various CS294’s at Berkeley, have exposed graduate students to high-profile “technical advisors” for their research
projects and have resulted in about a dozen refereed conference papers and at least three Ph.D. theses and numerous
Masters’ theses.

For non-CS undergraduates: My freshman seminars “History of Computing & Communication” (originally
developed with Prof. Randy Katz) and “Digital Dilemmas”, which explores the impact of technology on social
policy issues such as digital rights management and e-voting, expose students to the larger impact of CS in the
world and help to recruit curious students into the major. Successful seminar alumni who don’t choose CS often
enter political science, law or economics with a much deeper grasp of technology issues than their colleagues; recent
examples include one Marshall Scholar and one serial entrepreneur who has become a respected “financial advice
giver” to his generation of peers.

For CS undergraduates: In my pilot course in Web 2.0 development using Ruby on Rails, sophomores and ju-
niors develop complete Web applications of their own design at an early stage of their careers guided by professional
developers as well as faculty. Even though many students in the class have no prior Web development experience,
most projects reach an impressive level of quality in just eight weeks, with many having outside customers. Besides
leveraging undergraduates’ natural enthusiasm for entrepreneurship and creativity as an opportunity for good CS
pedagogy, the course exposes students to best practices and tools for professional software development, basic
project planning, and team skills, making them highly sought after by industry (and by the RAD Lab—I have
hired three alumni so far as undergraduate research assistants). A positive side effect is that the effort to provide a
“realistic” computing environment for the course has led to collaboration with Berkeley IS&T and Shel Waggener’s
office that will ultimately propagate these improvements University-wide.

While I plan to package this course as a self-paced course and/or transition it to an extracurricular “programming
club” similar to lecturer Dan Garcia’s successful undergraduate clubs, I also plan to develop the course into a CS194
(with Paul Hilfinger) and ultimately a regular curriculum offering. Software technology trends in the last 10 years
mean that CS undergraduates must be conversant with a broader range of technologies earlier in their careers,
essentially gaining breadth earlier and with fewer courses. For example, whereas relational database technology
previously was a specialty area in CS, today all software/systems students must be familiar with basic concepts
and tools in this area. The same is true of networking, cluster computing, concurrent programming, and human-
computer interaction. I believe the Ruby on Rails course can serve as the basis for a more in-depth Web software
development course that ties these areas together.

Professional Responsibility

Academia is fun. We get the best students, and mentoring them through research, teaching, advising, and general
life skills is not only rewarding but also probably the surest path to lasting impact. Having said that, academic
professionals’ responsibility (paraphrasing Paul Hilfinger) extends to every respect in which higher education can
benefit humanity, but with a strong emphasis on research and mentoring in our individual fields. I believe Berkeley
sets a good example in this regard, and I look forward to further developing those ancillary career areas beyond
my University research and teaching.

References

1]

2]

[12]

[13]

A. B. Brown and D. A. Patterson. To err is human. In Proceedings of the 1st Workshop on Evaluating and
Architecting System Dependability (EASY), Goteborg, Sweden, July 2001. IEEE Computer Society.

G. Candea, A. Brown, A. Fox, and D. Patterson. Recovery-oriented computing—designing multi-tier depend-
ability. IEEE COMPUTER, 2005. Invited submission; to appear.

G. Candea and A. Fox. Crash-only software. In Proc. 9th Workshop on Hot Topics in Operating Systems,
Lihue, HI, June 2003.

G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox. Microreboot—a technique for cheap recovery. In
Proc. 6th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’04), San Francisco,
CA, Dec. 2004.

M. Y. Chen, E. Kiciman, A. Accardi, E. A. Brewer, D. Patterson, and A. Fox. Path-based failure and evolution
management. In Proc. 1st USENIX/ACM Symposium on Networked Systems Design and Implementation
(NSDI’04), San Francisco, CA, March 2004.

A. Fox, E. Kiciman, D. Patterson, R. Katz, I. Stoica, and M. I. Jordan. Combining statistical monitoring
and predictable recovery for self-management. In 2004 ACM SIGSOFT Workshop on Self-managed Systems
(W0S5°04), Newport Beach, CA, October 2004.

A. Ganapathi, J. Wiener, D. Patterson, M. I. Jordan, and A. Fox. Predicting query and workload performance
for very large data warehouses. In submission, Feb 2008.

A. C. Huang and A. Fox. Cheap recovery: A key to self-managing state. ACM Transactions on Storage, 1(1),
2004.

E. Kiciman and A. Fox. Detecting application-level failures in component-based internet services. IEEE
Transactions on Neural Networks (special issue on Adaptive Systems), Spring 2005.

B. Ling, E. Kiciman, and A. Fox. Session state: Beyond soft state. In Proc. 1st Symposium on Networked
Systems Design and Implementation (NDSI’04), San Francisco, CA, March 2004.

S. Zhang, I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and A. Fox. Capturing, indexing, clustering, and
retrieving system history. In Proc. 20th ACM Symposium on Operating Systems Principles, Cambridge, UK,
2005.

S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and A. Fox. Ensembles of models for automated diagnosis
of system performance problems. In 2005 Intl. Conf. on Dependable Systems and Networks (DSN 2005),
Yokohama, Japan, June 2005.

P. B. k, C. Sutton, A. Fox, D. Patterson, and M. Jordan. Response-time modeling for resource allocation and
energy-informed slas. In SysML’07, Vancouver, BC, Dec 2007.

