
Reducing WWW Latency and Bandwidth
Requirements by Real-Time Distillation
Armando Fox and Eric A. Brewer
University of California, Berkeley

1. Low Bandwidth Surfing in a High Bandwidth World
2. How Distillation and Refinement Can Help

1. The Concept of Datatype-Specific Distillation
2. Refinement
3. Trading Cycles for Bandwidth
4. Using Refinement for Bandwidth Management
5. Optimizing for a Target Display
6. Optimizing for Rendering on Impoverished Devices

3. An Implemented HTTP Proxy Based on Real-Time Distillation
1. Statistical Models for Real-Time Distillation
2. Pythia’s User Interface

4. Implementation and Performance
1. URL Munging and HTML Modification
2. Exploiting URL-Level Parallelism
3. Refinement Cache

5. Implementation Status, Limitations, and Future Work
6. Conclusions
7. References

Low Bandwidth Surfing in a High Bandwidth
World
Today’s WWW is beginning to burst at the seams due to lack of bandwidth from servers to clients. Most
WWW pages are designed with high-bandwidth users in mind (i.e. 10 Mbit Ethernet) , yet a large
percentage of web clients are run over low-speed 28.8 or 14.4 modems, and users are increasingly
considering wireless services such as cellular modems running at 4800-9600 baud. A recent study by a
popular server of shareware, Jumbo, revealed that about 1 in 5 users were connecting with graphics
turned off, to eliminate the annoying latency of loading web pages. This is of particular concern to
corporate advertisers, who are paying for the visibility of their corporate logo.

Since there is no way to optimize a single page for delivery to both high-bandwidth and low-bandwidth
clients, some sites, such as [Xinside] , offer multiple versions of pages (no graphics, minimal graphics,
full graphics). Most sites, however, do not have the human resources or disk space to do this.

Clearly an automated mechanism for closing the bandwidth gap is needed. Several such mechanisms are
currently deployed, but all are inadequate:

Progressive and interlaced GIF and JPEG display a blurry image initially and refine it as more
image data arrives. However, for large images, the initial latency is still high, and once the client
makes the initial requests, the capability for "choreographing" the download of multiple large
images is limited because the data is being pushed by the server, not pulled by the client. The same
is true of the LOWSRC image tag extension proposed by Netscape.
The ALT tag provided in the HTML IMG environment allows a text string to be displayed in place
of an inline graphic, but the ALT text usually cannot carry the semantic load of the image it
replaces, and most advertisers would readily concede that text is no substitute for corporate logo
visibility.
The Bandwidth Conservation Society [BCS] has published a number of suggestions for content
providers to minimize the size of their images without sacrificing image quality, but their
techniques typically provide at most a factor of 1.5-2 in compression. This is not sufficient to
bridge the order-of-magnitude gap in bandwidth between, e.g., Ethernet and consumer modems.
A mechanism is proposed in [NPS95] for clients to negotiate for one of several document
representations stored at a server. Under the proposed scheme, the server creates a fixed number of
representations in advance, possibly with human guidance, and advertises to clients which
representations are available. Even if this mechanism were widely deployed (which would require
changes to servers), it would not satisfy clients whose connectivity would best be exploited with
an intermediate-quality representation not present at the server.
Caching [Gla93],[MLB95],[ASA+95] and prefetching reduce initial server-client latency and
server-cache bandwidth requirements, but do not reduce cache-client bandwidth. We believe that
distributed intelligent caching will ultimately be necessary, but not for reducing latency and
bandwidth to the client.

The methods described above are ineffective at closing the bandwidth gap because they either require
changes at the server (content or control), force additional interaction with the user (e.g. to explicitly
select one version of a page), do not allow the user to explicitly manage the available client bandwidth,
or require the user to sacrifice graphics altogether. We describe a mechanism that addresses all of these
problems: real-time adaptive distillation and refinement.

How Distillation and Refinement Can Help
The Concept of Datatype-Specific Distillation
Distillation is highly lossy, real-time, datatype-specific compression that preserves most of the semantic
content of a document. The concept is best illustrated by example. A large color graphic can be scaled
down to one-half or one-quarter length along each dimension, reducing the total area and thereby
reducing the size of the representation. Further compression is possible by reducing the color depth or
colormap size. The resulting representation, though poorer in color and resolution than the original, is
nonetheless still recognizable and therefore useful to the user. Of course there are limits to how severe a
degradation of quality is possible before the image becomes unrecognizable, but as we discuss below,
we have found that order-of-magnitude size reductions are possible without significantly compromising
the usefulness of an image.

Our definition of distillation as lossy compression is independent of the specific encoding of the image.
For example, GIF is a lossless image encoding format, but the distillation process throws away
information in shrinking the image and quantizing its colormap.

As another example, a PostScript text document can be distilled by extracting the text corresponding to
document content and analyzing the text corresponding to formatting information in order to glean clues
about the document structure. These clues can be used to compose a "plaintext-plus" version of the
document, in which, for example, chapter headings are in all caps and centered, subsection headings are
set off by blank lines, etc. The distilled representation is impoverished with respect to the original
document, but contains enough semantic information to be useful to the user. Adobe Systems’ Distiller
Pro package (not to be confused with our use of the term "distillation") performs a similar function,
constructing a portable document format (PDF) file from a PostScript file.

Clearly, distillation techniques must be datatype-specific, because the specific properties of a document
that can be exploited for semantic-preserving compression vary widely among data types. We say "type"
as opposed to "subtype" (in the MIME sense), since, for example, the techniques used for image
distillation apply equally well regardless of whether the source image is in GIF or JPEG format.

Refinement
Although a distilled image can be a useful representation of the original, in some cases the user may
want to see the full content of the original. More commonly, the user may want to see the full content of
some part of the original; for instance, zooming in on a section of a graphic, or rendering a particular
page containing PostScript text and figures without having to render the preceding pages.

We use the term refinement to refer to the process of fetching some part (possibly all) of a source
document at increased quality. We can define a refinement space for a given datatype, whose axes
correspond to the properties of the datatype exploited by the corresponding distillation technique. For
example, some obvious axes for still graphics are scale (as a fraction of the original) and color depth.
The source image corresponds to the tuple <1,1,...,1> in refinement space. Distillation and refinement
can then be thought of as parameterized mappings between points in refinement space. The example
interface by which a user specifies a desired refinement is application-specific; for example, using a
mouse to select a subregion of an image for zooming.

Refinement space for a given datatype may be discrete or continuous. For example, the pixel-dimension
refinement axis is (nearly) continuous, but for distilling rich text, we may be able to identify only a
relatively small fixed number of intermediate quality representations. For PostScript, these would likely
consist of "plain text" (ASCII only with minimal formatting clues), structured rich text (such as PDF or
HTML), and original PostScript.

Trading Cycles for Bandwidth
Because distillation can be performed in real time, it eliminates the need for servers to maintain multiple
intermediate-quality representations of a document: Any desired intermediate representation can be
created on demand using an appropriate distiller. The computing resources necessary for real-time
distillation are becoming cheaper and more plentiful, and we have found that at least certain kinds of
distillation can be done almost trivially in real time using modest desktop-PC hardware. Distillation and

refinement allow us to trade cycles, which are cheap and plentiful, for bandwidth, which is expensive
and scarce.

Using Refinement for Bandwidth Management
As an example of refinement in action, consider a user who has downloaded the image of Soda Hall in
the figure below to her laptop computer using a 28.8 modem. The 300x200 image, which occupies 17K
bytes and contains 16 colors, was obtained by distilling the original which has pixel dimensions
880x610, contains 249 colors, and occupies 503K bytes. Although the distilled image is clearly
recognizable as the building, due to the degradation of quality the writing on the building is unreadable.
The user can specify a refinement of the subregion containing the writing, which can then be viewed at
full resolution and color depth, as shown below. The refinement requires 15K bytes to represent.

Distilled to 320x200 (17KB) Refinement of writing on building (15KB)
Click here to see original image (503K GIF)

Notice how distillation and refinement have been used to explicitly manage the limited bandwidth
available to the user. The distilled image and refinement together occupy only a fraction of the size of
the original. The total bandwidth required to transmit them is a fraction of what would have been
required to transmit the original, which might have been too large to view on the user’s screen anyway.
The process of distilling the original to produce the smaller representation took about 6 seconds of wall
clock time on a lightly loaded SPARC-20 workstation; the process of extracting the subregion from the
original for refinement took less than 1 second.

Optimizing for a Target Display
Some notebook computers and PDA’s have smaller screens and can display fewer colors or grays than
their desktop counterparts, in addition to suffering from limited bandwidth. For such devices, we would
like to use the scarce bandwidth for transmitting a distilled representation of higher resolution, rather
than using it for transmission of color information in excess of the client’s display capability. Intelligent
distillation will scale the source image down to reasonable dimensions for the client display, and
preserve only the color information that the client can display. Distillation thus allows bandwidth to be
managed in a way that exploits the client’s strengths and limitations. The following table gives a
sampling of computing devices with typical display and bandwidth characteristics, with the minimum
latencies in minutes and seconds to transfer 5K, 50K and 200K bytes. These numbers serve as

zeroth-order approximations for a small inline image, a large inline image, and the total amount of inline
image data on a page, respectively.

Device CPU/MHz Typ. bandwidth
(bits/s) Display size

Minimum xmit
latency,
5K/50K/200K bytes

Apple Newton ARM 610/20 2400 320x240, 1-bit 0:17/2:50/11:20

Sony MagicLink Motorola
68340/20 14.4K 480x320, 2-bit gray 0:03/0:30/1:20

Typical notebook
PC

Intel or
PPC/60-100

28.8K wireline,
9600 cellular

640x480 to 800x600,
8-bit color

0:02/0:15/0:60
wireline,
0:04/0:42/2:48 cellular

Typical desktop
PC

Intel or
PPC/60-120

56K ISDN, 10M
Ethernet

640x480 to
1024x768, 16-bit
color

0:01/0:07/0:29

Optimizing for Rendering on Impoverished Devices
Some devices, particularly PDA’s, have limited onboard computing power and understand only a small
number of image formats. It would be painful and slow, for example, for an Apple Newton to receive a
GIF image and transcode it to PICT, its native graphics format, for display on the screen. Instead, this
transcoding can be done on a more capable desktop workstation as part of the distillation process,before
the image is sent to the client. The idea of using transcoding to address client limitations has been
explored in the Wireless World Wide Web experiment performed at DEC WRL [Bar95].

An Implemented HTTP Proxy Based on
Real-Time Distillation
We have shown that distillation and refinement provide the user with a powerful mechanism for
management of limited bandwidth, without completely sacrificing bandwidth-intensive nontextual (or
richtext) content. Since such a mechanism is sorely needed on the WWW, we have implemented an
HTTP proxy [LA94] based on real-time distillation and refinement. We have observed that using our
proxy makes Web surfing with a modem much more bearable, and makes Web surfing over
metropolitan-area wireless feasible. (Our work on distillation and refinement was originally done in the
context of wireless mobile computing.)

Mosaic, Netscape, and other popular WWW browsers allow the user to designate a particular host as a
proxy for HTTP requests. Rather than fetching a URL directly from the appropriate server, the fetch
request is passed on to the proxy. The proxy obtains the document from the server on the client’s behalf,
and forwards it to the client. The proxy mechanism was originally included to allow users behind a
corporate firewall to access the WWW via a proxy that had "one foot on either side" of the firewall. Our
proxy, Pythia* , is intended to run near the logical boundary between well-connectedness and
poorly-connectedness.

As a first-order approximation, if we take the majority of the wired Internet to be well-connected and
consider a client using PPP or SLIP to be poorly-connected, Pythia can run anywhere inside the wired
Internet. The architecture of a "proxied" WWW service is shown schematically below.

 The idea of placing a proxy
at this boundary has also been explored in the LBX (Low Bandwidth X) project, on which the Berkeley
InfoPad’s [BBB+94] "split X" server is based. The idea of using a proxy to transcode data on the fly was
discussed in [BMM95].

Statistical Models for Real-Time Distillation
Pythia works by modeling the running time and achieved compression of distillation algorithms for
various data formats. For example, given an input GIF or JPEG and a color quantization factor and
scale, the model is used to predict how long the distillation will take and approximately how much
compression will be achieved. Our current models provide a ballpark first cut for estimating
compression and latency, though significant deviations from the model prediction are observed in a
substantial fraction of cases. We expect the refinement of this model to be a focus of continuing
research.

Pythia uses the model to meet user-specified bounds on inline image size (and therefore latency) while
surfing the WWW. For example, suppose the user is using a 28.8 modem and has specified a maximum
latency of 5 seconds per inline image, and Pythia encounters an inline image that is 40 Kbytes in size.
The maximum traffic that can be carried in 5 seconds at 28.8Kbits/sec is about 5.6 Kbytes, so Pythia
calculates the distillation parameters necessary to produce a representation of the image that is about 5.6
Kbytes in size. In practice, the bound on the image size will be tighter, since Pythia must account for the
additional latency introduced by the distillation process itself.

The first graph below shows a breakdown of server fetch, distillation, and transmission times for a small
sample of images found on Berkeley WWW servers, as transmitted to a client on a conventional 14.4
modem using PPP.

The number in parentheses following the name of each image is the size of the source image, in
bytes, as stored on the server.

Each bar shows the breakdown of total client latency to receive the image: time for Pythia to
retrieve the image from server (svr), time to distill the image (distill), and time to transmit the
distilled image to the client (xmit). TCP roundtrip latencies between the client and proxy are
absorbed into this last component.

The four different bars for each image represent four different Pythia user profiles, varying in the
aggressiveness of distillation. In each case, the final size of the distilled representation is shown as
a number to the right of each bar.

For example, the image cool.gif , whose undistilled size is 417,852 bytes, was delivered to the client in a
distilled form of 12574 bytes. The delivery latency included about 2 seconds for Pythia to get the image
from the local server, about 8 seconds to distill it, and about 32 seconds to send the distilled version to
the client. The other three bars for cool.gif show similar latency measures for three different distilled
representations, of 7474, 4545, and 3348 bytes. As the graph shows, distillation ranges from less than 1
second up to a couple of tens of seconds, on a lightly-loaded SPARCstation-20.

The unusually high transmit latencies for the small (3K) images reflect a highly loaded PPP gateway that
typically adds up to .5 seconds each way per roundtrip; unfortunately, such performance is not unusual
when using PPP-based ISP’s.

The second graph below shows the raw transmit latencies, including TCP and PPP-gateway overhead,
for transmitting the undistilled originals of the above images to the client using the same modem
connection. For reference, the bars in the above graph are also reproduced below. As the graph shows,
the total perceived latency at the client is reduced by approximately an order of magnitude when Pythia

is used, even though the distillation process takes measurable time.

Pythia’s User Interface
Pythia maintains a user profile associated with the IP address of each HTTP client that contacts it, and
provides a mechanism for users to "register" if their IP address changes (as is the case, e.g., with ISP’s
that assign IP addresses dynamically when users dial up). The profile, which is user-settable via an
HTML form, encodes the user’s connection speed, some characteristics of the user’s display device, and
various other options. The display information is useful because exploiting the display’s constraints may
allow Pythia to produce a better representation of some graphic within the same latency bound (e.g. it
will permit color information to be traded for resolution).

To use Pythia, a user specifies Pythia’s host and port as the HTTP Proxy in the Preferences dialog of
most browsers, and fills out the profile form. Pages delivered by Pythia look like their "unproxied"
counterparts, except that some of the inline images have been distilled. Bounding boxes of the original
images are preserved, to accommodate pages where the layout has been fine-tuned for viewing on a
particular browser.

The user can request a refinement of a distilled image by following an HTTP link next to each distilled
image. Depending on the user’s profile, the original image will be fetched and displayed on a page by
itself, or it will be refined "in place" and the current page re-rendered around it. Pythia adds these "fetch

refinement" links to the HTML text on the fly, as described in the next section.

For example, here is a portion of a web page before refinement, and the same page after the user has
refined the inline image.

If image dimension hints are supplied in the source page’s IMG tag, Pythia passes them on to the client;
however, Pythia cannot add dimension hints itself, since at the time it sees the referencing HTML tag, it
cannot know what the actual image dimensions will be without prefetching part of the image, which
might add unacceptable latency. We are experimenting with this tradeoff to determine which method
will provide a higher perceived quality of service to the user.

Pythia also translates PostScript to HTML, using software developed in part by DEC SRC [McJ]. This
distillation typically results in a reduction of 5-7x for PostScript text, and has the additional advantage
that the text can be rendered on clients for which PostScript previewing is awkward, such as PC’s
running Windows. This is an example of distillation that provides both of the orthogonal benefits
mentioned previously: content size reduction and optimization for rendering on the target display.

Implementation and Performance
URL Munging and HTML Modification
When Pythia returns HTML text to the client, the text is scanned for IMG tags. For each such tag found,
Pythia does two things:

Modify the URL of the image source, so that when the image is requested, Pythia will recognize
the tag as belonging to an inline image. This could be omitted if the HTTP "Referer:" field was
filled in consistently by all browsers.

Insert a hyperlink immediately following the image tag. This new link will contain a URL, based
on that of the original image, that will cue Pythia to deliver an undistilled representation of the
image. If the user has elected to have Pythia re-render the entire page with the image refined in
place, the URL is instead based on the name of the referring page concatenated with a bit vector in
which each bit position indicates whether the corresponding inline image should be distilled or
not.

A more detailed explanation of the munging mechanism, for those who are interested, can be found on
Pythia’s home page.

Exploiting URL-Level Parallelism
Pythia’s internal architecture is modular: "distillation servers" for new datatypes can be easily added.
The distillation server need only provide a statistical performance model and the functionality to read
the source document and write out a distilled representation given some parameters. Although a distiller
can be launched as a standard shell pipeline, we also provide a standard makefile and front-end for
building somewhat more efficient distillation servers based on Berkeley sockets.

Distillers can run on the same physical machine as Pythia or on different machines. Pythia keeps track
of which distillers are running on which machines, and attempts to do simple load balancing across
them. The Berkeley Network of Workstations (NOW) project [ACP+95] has provided a job-queue
interface for harvesting idle cycles on machines in the NOW; we are retrofitting Pythia to use this
mechanism to spawn and destroy distillers dynamically as NOW resource levels fluctuate.

Refinement Cache
After distilling and forwarding an image to the client, Pythia caches a copy of the image locally to
minimize latency in case the client requests refinement. The cache is a very simple fully-associative
size-limited LRU whose keys are URL’s and whose data fields are the original image data.

Implementation Status, Limitations, and Future
Work
(You can click here to try Pythia live.)

Pythia’s "front end" currently runs on a lightly-loaded SPARCstation-20 and distributes image distillers
to 2-4 other workstations on the same subnet. Because it is a prototype and is not consistently running,
its user community is limited to only about a dozen users, and it is rare to see more than two users at one
time. Under these light conditions, the workstation console does not suffer noticeable performance
degradation due to Pythia usage.

Since Pythia can farm out distillation work to other workstations, the cycles required to perform
distillation for clients do not constitute a performance bottleneck. Instead, like HTTP servers, the
limiting factor is the single pipe in and out of the "front end" that receives HTTP requests (i.e. the
process listening on the TCP port designated as the HTTP Proxy). The current implementation of Pythia
is in unoptimized Perl; translation to C should increase the number of requests that can be handled by
the front end per unit time. Current usage patterns indicate that this metric will not be a bottleneck when
only a few users are served by a single front end. We are planning joint work with the Berkeley Office
of Telecommunications Services, which provides dial-up PPP and SLIP services to about 6,000
subscribers on the Berkeley campus, to allow them to provide web proxy service as part of their
subscription package. This experiment will stress Pythia and allow us to explore various strategies for
scaling the front-end using a "magic router" based on fast IP packet interposition [And95] .

Pythia currently performs a Unix fork() to handle each new HTTP request. It is well known that the
latency of this operation is substantial [Ous90] . Future versions of Pythia will be multithreaded rather
than relying on process-level parallelism, and idle worker threads rather than forked processes will
handle multiple incoming requests.

The bandwidth of the client connection currently must be filled in on the User Preferences HTML form.
Pythia takes the user’s word for this quantity, rather than attempting to measure the quality of the
connection directly (e.g., by estimating the latency between the transmission of HTML text to the client
and reception of an HTTP request for an embedded image). The short lifetimes of HTTP TCP
connections and the overhead of TCP slow start make it difficult to measure end-to-end bandwidth
accurately.

Pythia cannot hide server-to-proxy latency, though it can mitigate it by distillation and caching. Pythia’s
distillation estimates are based solely on the proxy-to-client bandwidth stated by each user.

Pythia is fault-tolerant with respect to distillers: it will reap distillers that are killed due to NOW load
balancing and will continue to function with degraded performance. If Pythia’s front-end crashes,
however, the user will see an error that the proxy has stopped accepting connections. We currently do
not have a fault-tolerance strategy for the front-end.

Because Pythia works by munging URL’s, it may cause cache inconsistency at the client. For example,
after a user stops using Pythia, that user’s cache will contain some entries whose keys (URL’s) are the
Pythia-modified URL’s rather than the original source URL’s. Flushing the client cache fixes this
problem at significant inconvenience to the user. URL munging is necessary because HTTP provides no
way for Pythia to maintain "session state" describing which inlines on a given page have been distilled
and which have not. To circumvent this limitation, Pythia encodes this information into the URL’s
passed back and forth between client and proxy. HTTP-NG will include some notion of session control,
which should allow us to maintain the appropriate state without resorting to URL-munging.

As part of our wireless and mobile computing effort, we are developing a variant of Pythia with a richer
client API for building network-adaptive applications. This API will allow negotiation of a wider variety
of datatypes, an environment in which agents can run, and distillation services for continuous-media
streams such as MPEG (an implemented example is [AMZ95]).

Conclusions
Pythia provides three important orthogonal benefits to WWW clients:

Real-time distillation and refinement, guided by statistical models, allow the user to bound latency
and exercise explicit control over bandwidth that may be scarce and expensive (e.g. metered
cellular phone service).
Transcoding to a representation understood directly by the client may improve rendering on the
client or result in a representation that can be transmitted more efficiently.
Knowledge of client display constraints allows content to be optimized for rendering on the client.

Users have commented that even the prototype version of Pythia provides a qualitative increase of about
5x when surfing the WWW over PPP with a 14.4 modem. These are the same users that previously
turned image loading off completely in order to make surfing bearable. With the continued growth of the
WWW, the benefits afforded by proxied services like Pythia will represent increasingly significant
added value to end users and content providers alike. Pythia is the first fruit of a comprehensive research
agenda aimed at implementing and deploying such services.

References
[ACP+95] Thomas E. Anderson, David E. Culler, David A. Patterson, et al. The Case for a Network of
Workstations. IEE Micro (to appear).

[AMZ95] Elan Amir, Steve McCanne, Hui Zhang. An Application-Level Video Gateway . Proc. ACM
Multimedia 95, San Francisco, Nov. 1995.

[And95] Eric Anderson. An Application of Fast Packet Interposing: The Magic Router.
http://www.cs.berkeley.edu/~eanders/262/.

[ASA+95] Marc Abrams et al. Caching Proxies: Limitations and Potentials. Fourth International WWW
Conference, Boston, MA, Dec. 1995.

[Bar95] Joel F. Bartlett. Experience with a Wireless World Wide Web Client. IEEE COMPCON 95, San
Francisco, March 1995.

[BBB+94] B. Barringer, T. Burd, F. Burghardt, et al. InfoPad: System Design for Portable Multimedia
Access. Proc. Calgary Wireless 94 Conference, July 1994.

[BCS] Bandwidth Conservation Society home page. http://www.infohiway.com/faster/

[BMM95] Charles Brooks, Murray S. Mazer, Scott Meeks, Jim Miller. Application-Specific Proxy
Servers as HTTP Stream Transducers. Fourth International World Wide Web Conference, Boston, MA,
Dec. 1995. http://www.w3.org/pub/Conferences/WWW4/Papers/56/.

[Gla93] Steven Glassman. A Caching Relay for the World Wide Web. Computer Networks and ISDN
Systems 27(2), Nov. 1994. Also appeared in Proc. First Int’l World Wide Web Conference.

[LA94] A. Luotonen and K. Altis. World-Wide Web Proxies.
http://www.w3.org/hypertext/WWW/Proxies/.

[McJ] Paul McJones, personal communication.

[MLB95] Radhika Malpani, Jacob Lorch, David Berger. Making World Wide Web Caching Servers
Cooperate. Fourth International World Wide Web Conference, Boston, MA, Dec. 1995.

[NPS95] Brian D. Noble, Morgan Price, and M. Satyanarayanan. A Programming Interface for
Application-Aware Adaptation in Mobile Computing. 1995 Mobile and Location-Independent
Computing Symposium.

[Ous90] John K. Ousterhout. Why Aren’t Operating Systems Getting Faster As Fast As Hardware?
USENIX Summer Conference Proceedings, June 1990.

[PG93] Venkata Padmanabhan and Jeffrey C. Mogul. Improving HTTP Latency. Computer Networks
and ISDN Systems 28(1), Dec. 1995. http://www.cs.berkeley.edu/~padmanab/papers/www_fall94.ps

[Xinside] X Inside Inc. home page. http://www.xinside.com

* In Greek mythology, Pythia was the intermediary who carried a pilgrim’s request to the Oracle at
Delphi and conveyed the reply back to the pilgrim.

