
1

Security On the Move: Indirect Authentication Using Kerberos
Armando Fox and Steven Gribble

University of California at Berkeley
{fox,gribble}@cs.berkeley.edu

Abstract

Even as mobile computing and network computing are
gaining momentum, Internet security is sharing the spotlight.
Security and authentication on open networks is already a
difficult problem, even without the additional risks posed by
wireless media and the additional software constraints
imposed by mobile computing devices with capabilities more
modest than those of full-blown laptops. We describe an
implemented indirect protocol called Charon, which pro-
vides authentication and secure communication to clients by
leveraging the strong protocol and deployed infrastructure
of Kerberos IV. Charon consists of a portable proxy module
that runs as untrusted, unprivileged code, and an extremely
lightweight client module that runs quite efficiently even on
our Sony MagicLink PDA. This partitioning of functionality
makes Charon attractive for ISP’s and network computing as
well as existing mobile devices. Charon’s security is at least
as strong as that of Kerberos--the user’s password never
leaves the mobile device, and Charon cannot obtain Ker-
beros services for the user without the user’s explicit cooper-
ation on each request. In effect Charon allows the mobile
device to function as asmart card. We describe our imple-
mentation of the protocol and a sample secure rlogin appli-
cation, and also describe how Charon can be used to
implement cross-roaming agreements between mobile com-
puting domains.

1 Introduction

1.1 Security, Open Networks, and Mobile Comput-
ing

The explosive growth of the Internet and the World Wide
Web has fueled the image of personal digital assistants
(PDA’s), laptop computers, and mobile devices of all kinds
as valuable “information retrieval” devices, rather than
stand-alone “islands” of computation. Surveys have shown
that mobile users wantaccess to the Internet and their desk-
top, not a new “killer app” for mobile devices. Wireless
infrastructure is rapidly being deployed to enable “unteth-
ered” mobile computing [2].

Unfortunately, security and authentication in unprotected
networks such as the Internet is a difficult problem [3, 1, 4],
and the wireless medium is physically easier to compromise
than wired media. Much attention has been focused recently
on securing this link [5, 6, 7]. However, link-level encryp-
tion and authentication solves only part of the problem.
Users still need to authenticate themselves toservices and

servers higher than this level. Users of mobile computers
will want access to resources in a visited mobile environ-
ment, on the strength of credentials validated by their home
environment. Users of network computing devices [8], and
the service providers to which those devices connect, will
both want authentication for connection to the service and
privacy when retrieving content, especially sensitive content
such as email. Even users of pagers and similar communica-
tion devices can benefit from a mutually-authenticated,
secure communication channel, if the mechanism is light-
weight enough that it is not cumbersome to implement on
such devices.

1.2 Charon: Indirect Authentication and Secure
Communication

In this paper we present Charon, an implemented proto-
col based on Kerberos [9] forindirect authentication and
secure communications with PDA-class mobile devices. By
indirect, we mean that most of the computational resources
needed to conduct the authentication protocol and establish a
secure channel are located at aproxy, a process running on a
desktop workstation in the wired infrastructure. This
approach simplifies the client software considerably.

Charon provides three important benefits to its clients:

• A means of authenticating themselves to a service
attachment point using a Kerberos-based protocol;

• A secure communication channel to that attachment
point, at least as strong as those provided by
Kerberos;

• access to two-way-authenticated Kerberized services
(in an existing Kerberos infrastructure).

All three benefits are realized without requiring the full
Kerberos library to be implemented on the client: instead the
functionality ispartitioned between the client and the proxy.

The idea of proxied service has been applied in many
scenarios [10, 11, 12, 13]. The application architecture of the
Daedalus wireless networking project [14], called GloMop,
is built around the idea of proxied services; Charon was orig-
inally implemented in this context, although its applicability
is much farther-reaching and its implementation essentially
independent of the GloMop architecture.

The paper is organized as follows. In the remainder of
this section we motivate our approach by showing why
PDA’s, network computers, smart personal communicators
(such as the GeoWorks-based Nokia 9000 [15]), and similar
devices represent an interesting design point, despite placing
significant constraints on software development. We

2

describe why Kerberos is a desirable mechanism but difficult
to port to such clients, and how our approach circumvents
these constraints. Section 2 describes the Charon protocol in
detail, pointing out how it differs from the unmodified Ker-
beros protocol, and describes the models of trust and secure
access Charon provides to the client. Section 3 describes our
implementation of Charon (both client and proxy compo-
nents) and a samplekrlogin application on a Sony Magi-
cLink PDA, whose characteristics are representative of the
clients we are targeting. Section 4 compares Charon with
Kerberos in terms of resistance to a variety of attacks. Sec-
tion 5 comments on the role of Charon within larger mobile
computing and proxy-based computing projects, and how it
instantiates some ideas for enhanced security presented in
the original work on Kerberos.

1.3 PDA’s and Network Computers
Mobile computing devices span a spectrum across which

computational power and local resources are traded off for
portability, high availability, and long battery life. At one
end of this spectrum are laptops, which are really portable
desktop computers—they have CPU’s of comparable ability
and significant local memory and persistent storage. Laptops
pay for these resources in physical size, weight (typically 3-6
pounds), and poor battery life (typically 2-5 hours). At the
other end of the spectrum are devices such as the InfoPad
[16], which function as mobile terminals and have virtually
no local computational power or storage capability. Such
devices are lighter and offer much higher battery life, but
they are useless without extensive network and computing
support infrastructure.

Somewhere between these extremes are PDA’s and their
future cousins, network computers [8]. Both have moderate
computational and memory resources and offer significant
simplicity and cost advantages compared to laptops; PDA’s
typically store applications and data in persistent memory
and can operate stand-alone, whereas NC’s rely on a network
infrastructure for access to both content and applications in
portable languages such as Java [17]. NC’s in particular are
expected to comprise an increasingly large target audience of
users (and service providers) who will certainly be con-
cerned about authenticated and secure access to the network
infrastructure.

1.4 Why Kerberos?
Kerberos [9] is a time-tested, widely-deployed system

that provides authentication and the establishment of secure
channels in open networks. Kerberos clients authenticate
themselves to servers by presentingtickets for each service.
Tickets are distributed by a central trusted server within each
administrative domain, and are constructed so that only cli-
ents possessing the appropriate key(s) are able to decrypt and
use them. Kerberos includes specific features to prevent
forgery of client or server identity, detect replay attacks [3],

establish secure channels between endpoints through safe
distribution of temporary session keys, and minimize the
likelihood that the user’s Kerberos password will be compro-
mised (it never leaves the user’s workstation, and all traces
of it are destroyed once the user has authenticated herself).
The strengths and weaknesses of Kerberos are analyzed in
detail in [1].

The infrastructure necessary to support Kerberos has
been deployed within the administrative domains of many
sites. Presumably the administrators of these domains have
taken reasonable precautions to secure the “trusted” compo-
nents of Kerberos. By leveraging this infrastructure, we
avoid introducing yet another trusted component in the sys-
tem and assuming the additional burden of proving it secure.

1.5 Porting Kerberos is Out of the Question
Traditional Kerberos clients access Kerberos client-side

services by linking against a Kerberos library, libkrb, which
in turn makes use of an encryption library, libdes. Two fac-
tors complicate a direct port of Kerberos to PDA’s or NC’s:
limited hardware and software resources and heterogeneous
development environments. We describe each in turn.

Today’s PDA’s lack the memory, computing power, and
persistent storage necessary to support the Kerberos library.
As a first order approximation, observe that this library is
663KB in size under Solaris 2.4, and the runtime image of
kinit, a trivial Kerberos client that performs initial user
authentication, is 525KB. In contrast, the Sony MagicLink
PIC-1000 PDA, whose capabilities are representative of
today’s devices, has a total of 2MB of SRAM which func-
tions as both the persistent store and a shared heap for all
applications, the operating system, and the GUI components.

Indeed, it is meaningless to speak of “porting” most Unix
software to today’s PDA’s: even with more memory and a
faster CPU, the development environments for most PDA’s
are so different from Unix (and from each other) that in
many cases we may only speak ofrewriting the software to
achieve the same functionality. Unix idioms do not apply;
Unix-like raw I/O facilities are usually not provided; and the
standard set of Unix libraries implementing kernel abstrac-
tions such as memory allocation services and standard I/O
are absent.

Kerberos is particularly problematic, and has a reputation
among system administrators of being notoriously difficult
to compile even on Unix systems [18]. Besides its size and
complexity (9,000 lines of C source), it relies heavily on
Unix idioms and libraries, use of Unix I/O (including Berke-
ley sockets) and memory services, and knowledge of hard-
ware semantics such as the byte ordering and word-size of
the host architecture. None of this functionality is easy to
implement or mimic on current PDA class devices, or on
most non-UNIX systems for that matter.

The Charon indirect authentication protocol addresses
these limitations bydisplacing complexity from the client to

3

the proxy: in Charon, only a DES encryption routine—rela-
tively portable and requiring no outside library support—
runs on the client, and the Kerberos library runs on the
proxy.

2 Charon Design

2.1 Charon Security Goals and Assumptions
The security goals of Charon are as follows:

1. Charon may be trusted with temporary session keys
for particular services it contacts on the client’s
behalf, but not with the user’s Kerberos password or
with sufficient information to impersonate the user in
case Charon is compromised. I.e. each time an addi-
tional service is requested, the client’s cooperation is
required to gain access.

2. If Charon is undermined, the worst the attackers can
do is obtain valid tickets for a currently-accessed Ker-
berized service. These tickets can be given short
lifetimes to minimize the damage attackers can do.

3. Eavesdropping on the PDA-to-proxy connection
should be no more useful than eavesdropping on any
(unprotected) network connection in a Kerberos
infrastructure.

Charon assumes the following about its environment and
usage model:

1. The user wishing to authenticate herself has a Ker-
beros password in her homerealm (Kerberos
administrative domain).

2. Some workstation that the client can easily contact is
running a proxy that understands the Charon proto-
col. (In section 3.1 we describe our portable
implementation of the proxy side of Charon for Unix
workstations.) The proxy is registered as a Kerber-
ized service in the same realm as the user desiring
authentication.

3. The user trusts the integrity of the proxy software, as
she would trust the integrity of anrlogin daemon
(e.g.) not to capture and compromise her password.

2.2 Client-to-Proxy Authentication: Overview
This overview of the Charon protocol is designed to

allow readers with detailed knowledge of Kerberos to under-
stand the essential features of the protocol without reading
the detailed description in section 2.3. Readers desiring a
review of the Kerberos protocol should refer to Appendix A.

In Charon, all interaction with the KDC and the TGS is
displaced from the client to the proxy: the client communi-
cates exclusively with the proxy, which also implies that the
client need not be TCP/IP-capable. The handshake consists
of two phases. During the first phase of the handshake (illus-
trated in figure 1b), the client uses Charon as a smart router
to obtain a TGT; from the point of view of the KDC and

TGS, Charon appears to be a client. During the second phase
of the handshake (figure 1c), the client and Charon cooperate
to obtain a service ticket from the TGS, by having the client
request a ticket for the Charon Kerberized service. After this
two-phase handshake has succeeded, the session key
included with the service ticket can be used to secure the
channel between the client and Charon. The client can also
request access to other Kerberized services (figure 1d).

The other important difference between Charon and Ker-
beros is that the proxy does not possess all the information
necessary to negotiate for services on behalf of the client.
Specifically, the client retains the session key between itself
and the TGS. This key is required in order to construct the
timestamped authenticators (see [9] or Appendix A) that
must be presented with each request for service; therefore
Charon cannot obtain service on behalf of the client without
the client’s explicit cooperation.

2.3 Client-to-Proxy Authentication: Detailed
Description

In describing the messages exchanged in the Charon pro-
tocol, we use the following terminology:

Kerberized service: A service (e.g.rlogin) that requires
its clients to authenticate themselves using Kerberos,
and is capable of authenticating itself to its clients
using Kerberos.

Kerberos server: A workstation that hosts one or more
Kerberized services. This requires that the credentials
for each hosted service be securely installed on the
workstation by the Kerberos administrator.

C: the client’s principal (i.e. the user). The user knows a
password from which the key Kc can be derived.

Kc: the key derived from the client’s Kerberos password.

S: the principal corresponding to some Kerberized
service, for example, Kerberizedrlogin.

Ks: The service’s secret key, stored locally (and
securely) on the server.

KDC: Key Distribution Center, a secure database that
knows the secret keys of every Kerberos principal in
its realm (administrative domain).

TGS: The Kerberos ticket-granting server.

TGT: The initial ticket returned by the TGS which,
when decrypted by the client using Kc, can be used to
prove the client’s identity in future transactions (in
conjunction with a valid authenticator) without
requiring the principal to supply Kc again.

Ktgs: the key of the ticket-granting server (TGS).

Ap: a Kerberos authenticator (containing a name,
address, and timestamp) for principal P.

4

Kc,tgs: the one-time1 session key (generated by TGS)
between client C and the TGS.

Kc,s: the session key between client C and server S.

Tc,s: a ticket authorizing client C to access service S.

{x}K: message x encrypted under key K.

Ch: the Charon agent (part of the proxy process)
running at the proxy workstation.

P: the proxy service as a Kerberos principal.

Kp: the proxy’s secret key, which allows the proxy to
authenticate itself as a Kerberos service.

Kc,p: the session key (generated by the KDC) for use
between the client and the proxy.

A summary of the messages exchanged during the first
phase of the Charon protocol is as follows. These 4 messages
replace messages 1-2 in the unmodified Kerberos protocol.

1. C→Ch: the client indicates its desire to establish
secure authenticated channel with Charon.

2. Ch→KDC: Charon requests a TGT on the client’s
behalf. This message is identical to message 1 of the
unmodified Kerberos protocol.

3. KDC→Ch: {Kc,tgs, {Tc,tgs}K tgs}K c

The TGT packet is returned to Charon; this message is
identical to message 2 of the unmodified protocol.

4. Ch→C: {Kc,tgs, {Tc,tgs}K tgs}K c

The TGT packet is forwarded verbatim to the client.
The client prompts the user for his/her Kerberos
password, converts it into a DES key, and uses DES to
decrypt the TGT packet. In unmodified Kerberos, the
user would instead type the password on the
workstation keyboard.

At this point in our protocol, in addition to the client’s
key Kc, the client possesses the contents of the TGT packet:
the TGT itself {Tc,tgs}K tgs, and a session key Kc,tgs to use
when talking with the TGS. The proxy possesses only the
contents of message 3 above (the encrypted TGT packet); in
particular it cannot decrypt message 3 (since it does not
know Kc), and therefore it cannot possess Kc,tgs. The client
will then request a ticket for the proxy service in the second
phase of the handshake:

5. C→Ch: P, {Tc,tgs}K tgs, {A c}K c,tgs

Request ticket for proxy service. The client must
construct an authenticator Ac and encrypt it using
Kc,tgs, obtained in step 4. (Compare this with message

1: Bellovin and Merrick have observed [1] that a Kerberos session key is
really amulti-session key, since it is used for all transactions with that ser-
vice for the lifetime of the ticket. They describe a simple change to the pro-
tocol that would allow the use of true one-time session keys.

3 in the unmodified Kerberos protocol: in that case, the
workstation can construct the authenticator directly,
since it knows Kc,tgs.) Since a timestamp is included in
the authenticator, the client’s clock must be at least
loosely synchronized with that of the TGS (to within 5
minutes for Kerberos IV). We do not address in this
paper exactly how synchronization should be achieved,
but note that a poorly synchronized client-side clock
can only result in denied service; it does not weaken
security of the system.

6. Ch→TGS: P, {Tc,tgs}K tgs, {A c}K c,tgs

Charon relays the information to the TGS as a well-
formed Kerberos request. Note that the forwarded
message contains the (encrypted) TGT originally
returned in message 3 and the authenticator constructed
by the client; both are necessary for the TGS to honor
the request. This is an important property: since only
the client can construct the authenticator, Charon
cannot construct a valid request for a service without
the client’s cooperation.

7. TGS→Ch: {Kc,p, {Tc,p}K p}K c,tgs

The TGS returns the proxy ticket and a session key for
use between the client and the proxy, all encrypted
with Kc,tgs, so that only the client can decrypt this
message. Note that there aretwo copies of Kc,p in this
message: one copy is contained in the encrypted ticket
Tc,p, and only the entity that can decrypt the ticket can
get that copy. In this case the entity is Charon, which
alone possesses the key Kp.

8. Ch→C: {Kc,p, {Tc,p}K p}K c,tgs

The ticket and key are forwarded verbatim to the
client, which decrypts them using Kc,tgs and extracts
(the first copy of) Kc,p.

9. C→Ch: {Tc,p}K p, {A c}K c,p

The client forwards the proxy ticket and a constructed
authenticator to Charon. The authenticator proves that
the client knows Kc,p. Since Charon has access to the
Kerberos credentials Kp of the proxy, it can decrypt
{Tc,p}K p and extract Kc,p from Tc,p.

At this point, the following are true:

• Both the client and the proxy are in possession of the
session key Kc,p, which can be used to encrypt
further communication between the client and the
proxy.

• None of the keys Kc,tgs, Kc, Kp, and Kc,p are ever
transmitted in the clear; nor are either of the tickets
Tc,tgs and Tc,p.

• Charon believes (see discussion in section 4.5) that
the user is who he/she claims to be.

5

• Charon does not know Kc,tgs.

To access additional Kerberized services, messages simi-
lar to 5-9 can be exchanged again to set up a session key
between the client and the service (messages 10 through 16
in figure 1d). This session key can then be securely relayed
to Charon, which can interact with the service on the client’s
behalf. This approach requires more work on the client, but
it ensures that the only keys Charon ever possesses are ses-
sion keys; furthermore, it does not have the session key
Kc,tgs necessary to construct the authenticators necessary for
requesting a new service ticket from the TGS or decrypting
the returned service ticket, and it also does not have the Ker-
beros password of the user necessary to obtain the session
key Kc,tgs.

An alternate approach that places more trust in Charon is
for the client to reveal to Charon Kc,tgs over the established
secure channel, thus allowing Charon to negotiate for Ker-
berized services directly (since it can now construct the
authenticators that must accompany the TGT on each
request). In this case, Charon still doesn’t have the user’s

1

Client

KDCTGS

Service

1 2
3

4

5

6

5, 9

(a)

(c)

6
7

8

Figure 1: (a) The Kerberos protocol. (b) Obtaining a TGT
via Charon. (c) Obtaining a session key for use with
Charon. (d) Obtaining a service key via Charon.

Client

KDCTGS

Service

2 3

4

Charon

(b)

Client

TGS

Service Charon

KDC

Client

TGS

Service Charon

KDC

10, 14

11
12

13

15

16

(d)

Kerberos password, but because it has Kc,tgs, it can do more
damage should it be compromised. Specifically, an attacker
who controls Kc,tgs can impersonate the client’s principal for
the lifetime of the TGT, which is specified at the time the
TGT is requested but in practice may be several hours.

2.4 End-to-End vs. Proxied Kerberized Services
Once the client has authenticated itself to the proxy, there

are two models for client access to Kerberized services, par-
ticularly those such astelnet that provide an encrypted chan-
nel:

• Proxied service: The proxy knows the session key for
the service. It decrypts data from the server,
optionally performs some transformations on it, and
optionally re-encrypts it before passing it to the client.

• End-to-end service: The proxy doesnot know the
session key for the service; it acts purely as a router
(and possibly network gateway) for the client.

We motivate the proxied service model by pointing to the
success of our proxy architecture at addressing client varia-
tion with respect to hardware, software and connectivity
[19]. For example, we have built (separately) an MH-com-
patible MIME email client for the Sony MagicLink. This cli-
ent retrieves MIME email via a proxy which performs
distillation [20] on included MIME images, optimizing the
images for display on the PDA’s screen. Clearly, such trans-
formations are impossible unless the proxy has access to
decrypted data.

The proxy can, of course, re-encrypt the data (using the
client-to-proxy session key Kc,pobtained as described in sec-

tion 2.3) before forwarding it to the client. Re-encryption
may be unnecessary if the network can perform separate
link-level encryption, as is the case with GSM [6].

Granting the proxy session keys to Kerberized services
implies a certain amount of trust in the proxy. We maintain
that the required amount of trust is not unreasonable: it is the
same trust placed in existing Kerberized services such as
krlogind.

3 Charon Implementation

3.1 Charon Protocol Module
For rapid prototyping and portability, we have been using

Perl 5 [21] as our prototyping language. Accessing the Ker-
beros IV client-side librarylibkrb.a from Perl required some
glue code, which was relatively painless to create due to the
extensive facilities Perl 5 provides for exactly this linking
process. [We expect to make this software freely available by
final revision time.]

Kerberos also makes use of a DES [22] encryption
library libdes.a. Clients normally do not access the encryp-
tion library directly: they compose and decompose encrypted
text via calls to the Kerberos library, which in turn calls the

6

encryption library. Kerberos was specifically designed this
way so that the encryption module would be easily replace-
able, although in practice all currently deployed implementa-
tions of Kerberos IV use DES. As it turns out, thekrlogin
client, which we used as an example application, allows for
an encrypted connection by explicitly calling DES for
encryption.

Our proxy consists of a set of modules that provide vari-
ous proxied services to a connected client. The Charon pro-
tocol module takes control when a client first connects to the
proxy. After authenticating the client, Charon remains avail-
able to provide access to Kerberized services and to provide
encrypted streams as an option for any service. The Charon
module consists of about 500 lines of Perl; a “minimal”
proxy, including Charon and all proxy support code but no
access to other services, consists of about 1500 lines of Perl.

3.2 Proxy’s Kerberos Service Key
Every Kerberized service is required to have a key that it

can use to authenticate itself to clients. As explained in sec-
tion 2, Charon bootstraps a secure channel to the client by
treating the proxy as a Kerberized service.

For ease of implementation, we chose to make the proxy
a service of typercmd, which is the same type used for exist-
ing rlogin andtelnet services on our development machine.
The motivation for this decision was that thercmd service
key was already stored inkrb.srvtab on our machine and
entered into the KDC; had we chosen to make the proxy a
different type of Kerberized service, an appropriate entry
would have to have been added to both our machine and the
KDC. This process requires intervention by a system admin-
istrator, so in the interest of expediency we chose to avoid it.

However, we stress that in general this is abad approach
for several reasons:

• The proxy is a fundamentally different Kerberos
service from eitherrlogin or telnet, and possessing a
ticket to use the proxy should not necessarily entitle
the client to establish anrlogin session—yet in our
initial implementation this is exactly the case.

• To read thercmd credentials, the proxy must run as
root. As we discuss in section 4.6, in most scenarios
this constitutes a needless security risk.

We return to administrative issues in section 4.6.

3.3 Client-side implementation on Sony MagicLink
The Charon protocol was designed in such a way that the

client-side component must only perform a small set func-
tions and have minimal knowledge of Kerberos protocols
and ticket formats. Specifically, the client-side components
must be able to do the following:

• Construct authenticators, which have a relatively
simple format and include a timestamp.

• Extract session keys from tickets. Session keys

happen to be the first 8 bytes of a ticket, so no
complex parsing of the ticket structure is necessary
by clients.

• Communicate with the proxy over some sort of
reliable stream. In our implementation, we used a
dial-in connection and a standard LAPM-capable
[23] modem, obviating the need for a TCP/IP stack
on the client.

• Perform DES encryption and decryption.

The DES library is the most complex component of the
client-side Charon implementation. This is a remarkable
statement, given the relative complexity of the full Kerberos
protocol and implementation. Our design pushes this com-
plexity off of the client while maintaining the security and
integrity of Kerberos. The design also completely shields cli-
ent-side applications from the details of the authentication
mechanism.

We chose to implement the client-side components of
Charon on a Sony MagicLink PDA [24], which features a
relatively rich OS (MagicCap) and a C compiler. Nuances of
the MagicCap OS forced us to rewrite much of thelibdes
library. Our implementation of the MagicCap DES library
contains about 1200 lines of source code, resulting in a com-
piled image size of about 30KB. The rest of the Charon cli-
ent (complete with a modest user interface) required another
750 lines of source (15KB compiled), for a total footprint of
approximately 45KB on the PDA—about 9% of the Unix
implementation ofkinit. As we discussed in section 1.5, this
economy of size is essential when dealing with PDA class
devices.

3.4 Adding Access to Kerberized Services
In traditional Kerberos, a Kerberos client authenticates

itself to a server via two Kerberos library functions:
get_ad_tkt to obtain a service ticket for the service
(using an existing TGT), andkrb_sendauth to present
the ticket to the remote server and effect (possibly mutual)
authentication. The Charon module provides direct access
from Perl to krb_sendauth, but it cannot call
get_ad_tkt directly because that routine tries to use the
session key Kc,tgs for two operations:

• to construct the authenticator that must accompany
any request to the TGS;

• to decrypt the response returned by the TGS.

Recall that as described in section 2.3, Kc,tgs is known
only to the client, not to Charon. Therefore Charon must ask
the client to construct the authenticator to be passed to the
TGS, and when the TGS sends a reply, Charon must pass the
reply packet to the client for decryption.

To address this difference, Charon provides a function
charon_get_ad_tkt, which obtains a ticket using the
Charon protocol messages 5-9 rather than the unmodified

7

Kerberos messages 3-4.charon_get_ad_tkt is there-
fore a functional replacement for the standard Kerberos
get_ad_tkt, and can be called by any proxy module that
wants to provide client access to a Kerberized service.

3.5 A Test Application: krlogin
As a test application, we modified an existing MagicCap

rlogin client to take advantage of our Charon protocol. The
resultingkrlogin client is fully Kerberized and can support
encrypted traffic. Only trivial modifications were necessary,
since the authentication and encryption operations provided
by the client-side Charon implementation are completely
transparent to the rlogin client.

On the proxy side, access to a Kerberized service is pro-
vided via a proxy module that implements the specific ser-
vice. For example, thekrlogin module understands how to
open a logical stream from a client, and negotiate for a (pos-
sibly encrypted)rlogin session to a specified host. Thekrlo-
gin module invokes messages 10-16 of the Charon protocol
(implemented in the Charon module) to perform mutual Ker-
beros authentication between the client and thekrlogind on
the target machine.

3.6 “Porting” to Other Devices
A wide variety of devices could potentially benefit from

the Charon protocol, including a large number of extremely
heterogeneous clients and laptop computers of differing
operating systems, computational prowess, and communica-
tion abilities. Attempting to design software that can be eas-
ily ported across this large class of target devices is difficult
at best, and seems intractable for software of any complexity.

Because of these difficulties and the impoverished nature
of the targeted client devices, both the Charon protocol and
the client-side components required to implement it were
specifically designed to be as simple as possible. Rewriting
these components on new devices is intended to be a rela-
tively simple task. For example, in our implementation, the
file that describes the format and contents of Charon protocol
messages between the client and the proxy is actually used
as input to a recursive-descent parser, which generates code
to parse and verify the integrity of the different messages.
[Note to reviewers: implementations of Charon clients in
Java [17]and Geos [25] are currently underway. Our experi-
ence will allow us to evaluate the above claim.]

3.7 Performance of DES on PDA
Our recent experience porting a GIF renderer [19] and

audio stream decoder [26] to the MagicLink device strongly
suggested that the limiting factor in Charon performance
would be the speed of DES encryption and decryption. We
have found that the Charon handshake takes about 2 seconds
(using the MagicLink’s 2400 baud modem) when talking to
a “dummy” test server that generates a canned set of
responses for the client, and about 5 seconds when talking to
the real Charon module and interacting with Kerberos. This

is not surprising since the communication between Charon
and the Kerberos KDC and TGS seems to take about 2-3
seconds. These results suggest that the “untrusted Charon”
model, in which the client never relinquishes Kc,tgs to the
proxy but instead constructs an authenticator for every new
service request, will yield acceptable performance even on
PDA-class devices.

[Note to reviewers: Since thekrlogin client is still under
development, we do not yet know how well DES will per-
form for interactiverlogin traffic. We expect to have these
measurements by the final revision deadline.]

4 Charon Security and End-to-End Attacks
This section presents an examination of potential end-to-

end attacks in a Charon implementation and attacks on the
protocol itself. There are three logical endpoints in our sys-
tem: the client, the proxy (including Charon), and the Ker-
beros infrastructure agents (in particular, the TGS and the
KDC). Each of these could potentially be compromised by
an attacker. We omit discussion of attacks on the Kerberos
protocol itself, as these are treated in detail elsewhere [1,27]

4.1 Attacks by Malicious Clients
The greatest strength of the Kerberos architecture is its

near immunity to attack by malicious clients; this strength is
inherited by the Charon protocol. This strength is important
since it is relatively easy to subvert a client in a distributed
open system, but the Kerberos architecture prevents such
subverted clients from gaining access to services. The only
information given freely to a client by both the Kerberos and
Charon protocols is a TGT encrypted with both the client’s
key Kc and the TGS’s key Ktgs; if the TGT is not properly
decrypted by the client, or if an invalid authenticator is
returned to Charon in step 5 of our protocol, then the TGS
will detect this after step 6 and refuse to grant service tickets.
Although a TGT that has been decrypted by a client can be
captured by sniffing network traffic, such a TGT is useless
without the session key Kc,tgs that had accompanied it, as
Kc,tgs is required to construct an authenticator. Replay
attacks that include captured authenticators are also futile

because of the timestamp embedded in the authenticator2

and because the attacker does not possess Kc,tgs.

4.2 Attacks on the Charon Host Workstation
If the workstation on which the proxy is running is com-

promised, then it is possible for the attacker to obtain the
Kerberos credentials stored in thekrb.srvtab file. This
implies that such the attacker can then obtain all session
keys, secret keys, and tickets that Charon ever possesses.

2: There is a well-known Kerberos attack that involves compromising a
network time service (see, for instance, [1]). We do not address this attack,
but merely assert that our protocol is no worse that Kerberos in this regard.

8

Fortunately, this includes neither the client’s key Kc, nor the
session key Kc,tgs for constructing authenticators. A compro-
mised Charon proxy workstation implies that services
already requested by a client can be commandeered, but new
services cannot be initiated by the attacker by impersonating
the user.

4.3 Attacks on the File System
We must include as a logical endpoint the file system on

which the Charon and proxy executables are stored. Net-
worked filesystem attacks resulting in unauthorized write
access to a filesystem [28] or on-the-wire binary patching
[29] can result in compromised binaries being executed on
the workstation, thus compromising the workstation. We
guard against this by running Charon and the proxy from a
local file system, trusting the compiler that generated the
executables.

A file system attack can be used, for example, to compro-
mise thekinit program used to obtain an initial TGT. Users
type their Kerberos password intokinit; if any part ofkinit
(including the DES encryption library) is replaced with a
subverted version via a file system attack, attackers can eas-
ily discover a user’s Kerberos password and gain access to
the system. Charon does not suffer from this problem—the
critical kinit functionality resides on the client, which is pre-
sumed to be a PDA-class device and by nature cannot be
subverted by such an attack.

4.4 Timing Out Kerber os Tickets
A further defense against attackers is to request Kerberos

tickets with short lifetimes. In the Charon protocol, the client
principal indicates to Charon the desired lifetime of each
requested ticket. If a ticket expires, a new ticket must be
requested.

Note that this approach even applies to “session-ori-
ented” services such askrlogin, since the expiration date of a
Kerberos ticket indicates the latest date at which it can be
presented. Once ankrlogin session is started, the Kerberos
ticket that started it is not used again; therefore the ticket can
be immediately destroyed or timed out, to prevent an
attacker from using it to open a newkrlogin session as the
user. The attacker could try to take over the existingkrlogin
session by attacking the TCP connection, but without the
original krlogin ticket, the attacker cannot discover the ses-
sion key being used to encrypt session traffic.

4.5 Strength of Charon’s Protocol
In [27], a logic for examining the integrity of an authenti-

cation protocol is described. This logic was used to formally
verify the correctness of the Kerberos protocol, and to help
extract the list of assumptions that must be made for the pro-
tocol to remain valid.

The same proof of the Kerberos protocol from [27] can
be usedunmodified to prove the correctness of the Charon

handshake protocol. This is a strong statement - it implies
that the same set of assumptions must be made when using
Charon that must be made for Kerberos, and that our modifi-
cations to the Kerberos protocol do not change its ideal,
abstract logical properties. This is intuitive in retrospect;
Charon acts as a data tunnel during the first half of the
authentication handshake, and as both a data tunnel and a
service during the second half of the handshake. When act-
ing as a data tunnel, it can be considered as part of the net-
work infrastructure (from a logical standpoint). Since
Kerberos already assumes that the network is untrustworthy,
using Charon as a data tunnel (essentially a router) does not
affect the strength of the protocol.

If the client decides to relinquish service session keys to
the proxy, obviously the security properties and assumptions
of the Charon protocol diverge from those of Kerberos. The
client must assume that the proxy is trustworthy and uncom-
promised. Although strictly speaking, this same assumption
must be made when clients converse with Kerberized ser-
vices such askrlogin, relinquishing session keys to a proxy
means that the proxy could potentially perform actions as the
client, but that the client never becomes aware of.

The specific assumptions that must be made about the
Kerberos (and therefore Charon) protocol are:

• all principals must trust that the KDC and TGS are
not compromised, which implies that the secret keys
shared with them are safe

• principals must trust that the KDC and TGS generate
good session keys, and that those session keys are
never known to anyone besides the KDC, the TGS,
and the principals participating in the session

• principals must believe that timestamps embedded in
tickets and authenticators are “fresh”, i.e. that
duplicated or old tickets and authenticators used in a
replay attack can be detected and rejected

The fundamental implication of these assumptions is that
parties that want to communicate with each other securely
must trust each other, and that all parties involved (princi-
pals, the KDC, and the TGS) are uncompromised, including
the clocks that those parties access.

4.6 Who Does Charon Run As?
There already exist several programs that start up in priv-

ileged mode (i.e. setuid toroot), accept a connection from an
arbitrary source, authenticate a user, and then continue to run
as that user by changing the effective UID. Rlogind is an
example of such a program.

Charon (and the proxy) need not use this model. Instead,
the proxy can run as an unprivileged fictitious user, say
charon, who has no login shell or home directory and exists
solely for the purpose of running Charon. This is possible
because a valid Kerberos tickets is honored regardless of the
UID of the presenter. If Charon has obtained a Kerberosrlo-

9

gin ticket for userjoe, then Charon can present that ticket to
start anrlogin session asjoe even if Charon is running as
user charon. We remind the reader that this configuration
does not pose a serious security risk: Charon must also
present a valid authenticator, which requires the client’s
cooperation to construct.

This model works well when all services the user wants
to access are Kerberized. If, however, the user wants to
access certain non-Kerberized services (for example, her
home directory mounted on a non-Kerberized traditional
NFS server, which authenticates by UID), our model will
fail. One obvious solution is to allow the proxy to run with
the user’s UID, but in order to set the effective UID the
proxy must start out running asroot—just as current pro-
grams likerlogind do. Since programs of nontrivial com-
plexity represent inherent security weaknesses which have
been successfully exploited [30], we prefer to avoid the tra-
ditional method and are still investigating alternate ways to
provide legitimate users access to non-Kerberized services.

We point out that this is only an issue when the requested
service performs authentication based on UID; it is not an
issue for services such as Web access, where the authentica-
tion occurs at the application level.

5 Other Applications and Work in Pr ogress

5.1 Authentication for Network Service Providers
Charon can be used to provide relatively lightweight but

strong authentication for users connecting to a network ser-
vice provider. The connection might be an IP connection for
accessing conventional Internet services such as the Web, or
it might be for two-way paging. Charon can provide users of
pagers and similar devices with authenticated, secure com-
munications in both directions. Because the client side of the
Charon implementation is lightweight by design, it is reason-
able to consider implementing it on such devices.

A good target for such an experiment is the UC Berkeley
Office of Telecommunications Services (TCS), which pro-
vides dial-up IP access via 14.4 or 28.8 modem to about
20,000 users in the UC Berkeley community. Since low-
speed connections make Web surfing painful, we plan to
deploy distillation-based Web proxies [20] as a value-added
service to end users. Charon can be used to authenticate the
users entitled to the service, and if the users so desire, to pro-
vide a secure connection to other Internet resources such as
their email.

5.2 Charon, Daedalus, and GloMop
The Daedalus project [14] is investigating wireless over-

lay networks and cross-roaming agreements between admin-
istrative domains. Proxied services are provided to wireless
clients in the Daedalus system via a proxy architecture called
GloMop, which is described extensively elsewhere [31,19].

The Charon module of the GloMop proxy will be used
within the Daedalus architecture in two ways:

• to authenticate users of the GloMop proxy in their
home domain (Kerberos realm);

• to authenticate users visiting another domain, by
verifying that they can authenticate themselves to
some home domain with which the visited domain
has a pre-established trust agreement.

The second function can be realized by exploiting sup-
port in Kerberos for inter-realm authentication. It requires
only that a shared secret be established between any pair of
KDC’s whose Kerberos realms have established cross-roam-
ing agreements. Charon is an attractive option for Daedalus
because it is a strong protocol, because it uses a widely
deployed authentication infrastructure, and because it
requires only minimal changes to each domain’s Kerberos
database to establish a cross-authentication channel.

5.3 PDA’s as Smart Cards
One flaw in the existing Kerberos implementation is that

users must type their Kerberos passwords into thekinit pro-
gram to obtain an initial TGT. If these keystrokes are cap-
tured (for instance by snooping unprotected traffic to the X
server, tampering with keyboard device drivers, or simply
peering over somebody’s shoulder) then an attacker can
impersonate the attacked principal.

With Charon, an attacker would have to compromise
software on principals’ PDA’s in order to capture their Ker-
beros passwords. PDA’s are very personal devices that are
rarely left unattended, and they are seldom connected to a
network in such a manner than an over-the-network attack is
possible. It is therefore much harder to compromise a PDA
so as to capture keystrokes from it, and then recompromise it
to cause it to transmit the captured keystrokes to an attacker.
In a sense, the PDA has become asmart card in this capac-
ity. Steiner et al. mention this idea in [9].

5.4 Conclusions
We have presented an implemented protocol, Charon, for

authentication and secure communication between a client
(PDA-class device or network computer) and a proxy (or
service attachment point). Charon boasts the following prop-
erties:

• Charon is built on top Kerberos, a widely-deployed,
secure, and field-tested authentication system.

• Only DES encryption and decryption need be ported
to clients, which typically suffer from limited
computing resources and completely dissimilar
development environments. We were able to keep our
implementation down to 45 KB on the Sony
MagicLink PDA, as compared to 525KB for Unix
kinit.

• The client communicates exclusively with a proxy

10

that provides indirect authentication and can serve as
a network gateway, eliminating the need for the client
to implement full TCP/IP.

• Neither the user’s Kerberos password nor the key
required to construct Kerberos authenticators (to
request access to services) ever leave the client, so
Charon cannot impersonate the user without her
cooperation.

• No sensitive data is transmitted in the clear. In
addition to access to encrypted Kerberized services,
Charon can be used to encrypt the client-to-proxy
link for existing unencrypted services.

• Charon is at least as immune as Kerberos to protocol-
based attacks, and more immune to certain end-to-
end attacks: in effect PDA’s can be used as smart
cards for authenticating the user.

5.5 Acknowledgments
Charon was done as a semester project for a course in

wireless mobile communications and a course in distributed
systems, with the initial goal of providing an attractive
authentication and cross-roaming mechanism for Daedalus.
Eric Brewer pointed out the wider applicability of indirect
authentication for network computers, intelligent personal
communicators, and ISP’s.

Ian Goldberg and David Wagner, cypherpunks extraordi-
naire, provided many useful insights on both the practical
aspects and the security aspects of the Charon design and
implementation.

Venkata Padmanabhan suggested the supremely snappy
catch phrase “Security on the Move” for the paper title.

6 Bibliography
[1] S.M. Bellovin and M.Merritt. Limitations of the Kerberos

authentication system. InProceedings USENIX Winter Con-
ference 1991, Dallas, Texas, USA, 1991.

[2] D. Cox. Wireless personal communications: What is it?
IEEE Personal Communications, pages 20–35, Apr 1995.

[3] R. Needham and M.Schroeder. Using encryption for au-
thentication in large networks of computers.CACM,
21(12):993–999, December 1978.

[4] H. Jerome and J.Saltzer. The protection of information in
computer systems.Proceedings of the IEEE, 63(9):1278–
1308, Sep 1975.

[5] A. Aziz and W.Diffie. Privacy and authentication for wire-
less local area networks.IEEE Personal Communications,
pages 25–31, First Quarter 1994.

[6] D. Brown. Techniques for privacy and authentication in per-
sonal communication systems.IEEE Personal Communica-
tions, August 1995.

[7] Y. F. etal. Security issues in a cdpd wireless network.IEEE
Personal Communications, 2(4):16–27, Aug 1995.

[8] T. R. Halfhill. Inside the web pc.Byte Magazine, pages 44–
56, March 1996.

[9] J.G. Steiner, C.Neuman, and J.I. Schiller. Kerberos: An
authentication service for open network systems. InPro-
ceedings USENIX Winter Conference 1988, pages 191–202,
Dallas, Texas, USA, February 1988.

[10] C. Brooks, M.S. Mazer, S.Meeks, and J.Miller. Applica-
tion-specific proxy servers as http stream transducers. In
Proceedings of the Fourth International World Wide Web
Conference, Dec 1995.

[11] M. A. etal. Caching proxies: Limitations and potentials. In
Proceedings of the Fourth International World Wide Web
Conference, Boston, MA, USA, Dec 1995.

[12] Netscape Communications Corporation. The Netscape
Proxy Server (home page). "http://www.pinncomp.com/
netscape/proxy_server.html".

[13] B. Zenel. A proxy based filtering mechanism for the mobile
environment. Thesis Proposal, Mar 1996.

[14] RandyH. Katz etal. The daedalus project (home page). ht-
tp://daedalus.cs.berkeley.edu.

[15] Geoworks and Nokia. Nokia 9000 communicator (home
page). "http://www.geoworks.com/htmpages/9000.htm".

[16] B. Barringer et al. Infopad: A system design for portable
multimedia access. InCalgary Wireless 94 Conference, July
1994. Available at http://infopad.eecs.berkeley.edu/info-
pad-ftp/papers/1994/infopad_system_design.wireless94.

[17] SunLabs. The java language: A white paper. Available at
http://java.sun.com.

[18] E. Anderson. Personal communication, May 1996.

[19] Currently under blind review.

[20] A. Fox and E.A. Brewer. Reducing www latency and band-
width requirements via real-time distillation. InProceedings
of the Fifth International World Wide Web Conference, Par-
is, France, May 1996. World Wide Web Consortium.

[21] L. Wall and R.L. Schwartz.Programming perl. O’Reilly &
Associates, Inc., 1991.

[22] NationalBureau ofStandards. Data encryption standard.
Technical Report Publication 46, Federal Information Pro-
cessing Standards, 1977.

[23] ITU-T Recommendation v.42. International Telecommuni-
cation Union, March 93.

[24] Sony Corporation. Sony MagicLink PDA (home page). "ht-
tp://www.sel.sony.com/SEL/Magic/".

[25] Geos operating system for PDA’s (home page). "http://
www.geoworks.com/htmpages/sso.htm".

[26] S.Gribble. Real-time streams to PDA’s. "http://
www.cs.berkeley.edu/~gribble/cs294-3_multimedia/
project/project.html".

[27] M. Burrows, M.Abadi, and R.Needham. A logic of authen-
tication.ACM Transactions on Computer Systems, 8(1):18–
36, Feb 1990.

11

[28] W. R. Cheswick and S.M. Bellovin. Firewalls and Internet
Security: Repelling the Wily Hacker. Addison-Wesley Pro-
fessional Computing Series. Addison-Wesley, 1994.

[29] I. Goldberg, D.Wagner, E.A. Brewer, and P.Gauthier. Ba-
sic flaws in internet security and commerce. "http://
www.cs.berkeley.edu/gauthier/endpoint-security.html".

[30] S.M. Bellovin. Personal communication, May 1996.

[31] Eric A. Brewer etal. The GloMop project (home page). ht-
tp://www.cs.berkeley.edu/~fox/glomop.

Appendix A: Review of Kerberos
Authentication Protocol

In this section we review the unmodified Kerberos proto-
col, so that we can then describe Charon by indicating how it
differs from Kerberos. The Kerberos authentication protocol
is an example of the Needham and Schroeder [3] key distri-
bution protocol. The protocol is depicted in figure 1a—we
briefly review it using the following terminology. Recall that
in Kerberos, each entity capable of authenticating itself is
referred to as aprincipal, and that to each principal corre-
sponds a secretkey known only to itself and the Kerberos
Key Distribution Center (KDC).

In the first stage of the protocol, the client attempts to
obtain a ticket-granting ticket (TGT); this step requires the
client’s principal to supply his Kerberos password. Once
obtained, the TGT allows the client to request tickets for
additional services from the TGS, without requiring the cli-
ent’s principal to retype the Kerberos password each time.
These additional tickets are presented to the appropriate ser-
vice as a means of proving the authenticity of the client’s
request for service. The exact messages exchanged are sum-
marized as follows:

Messages 1-2: the client obtains a TGT. These are the
messages exchanged by thekinit program.

1. C→KDC:

The client requests a TGT from the TGS.

2. KDC→C: {Kc,tgs, {Tc,tgs}K tgs}K c

The KDC returns the TGT (encrypted with the TGS’s
key) and a session key for use with the TGS, all
encrypted with the client’s key.

Messages 3-4: the client obtains a ticket for a service

3. C→TGS: S, {Tc,tgs}K tgs, {A c}K c,tgs

After decrypting message 2 using Kc, the client
requests a ticket for service S, presenting the TGT (to
authenticate itself) and a constructed authenticator (to
guard against replay attacks) as credentials.

4. TGS→C: {Kc,s, {Tc,s}K s}K c,tgs

The TGS returns a ticket for the service encrypted with

the service’s key, and a session key for use with that
service, all encrypted with Kc,tgs.

Messages 5-6: the client requests service

5. C→S: {Tc,s}K s, {A c}K c,s

After decrypting message 4 using Kc,tgs, the client
presents the ticket Tc,s and authenticator Ac to the
service.

6. S→C: service begins.

