
Appears in Proceedings of the 8th Workshop on Hot Topics in Operating Systems (HotOS-VIII), May 2001

Recursive Restartability: Turning the Reboot Sledgehammer into a Scalpel

George Candea Armando Fox
Stanford University�

candea,fox � @cs.stanford.edu

Abstract

Even after decades of software engineering research, complex
computer systems still fail, primarily due to nondeterministic
bugs that are typically resolved by rebooting. Conceding that
Heisenbugs will remain a fact of life, we propose a systematic
investigation of restarts as “high availability medicine.” In this
paper we show how recursive restartability (RR) — the ability of
a system to gracefully tolerate restarts at multiple levels — im-
proves fault tolerance, reduces time-to-repair, and enables sys-
tem designers to build flexible, highly available software infras-
tructures. Using several examples of widely deployed software
systems, we identify properties that are required of RR systems
and outline an agenda for turning the recursive restartability phi-
losophy into a practical software structuring tool. Finally, we de-
scribe infrastructural support for RR systems, along with initial
ideas on how to analyze and benchmark such systems.

1 Introduction

Despite decades of research and practice in software engineer-
ing, latent and pseudo-nondeterministic bugs in complex soft-
ware systems persist; as complexity increases, they multiply fur-
ther, making it difficult to achieve high availability. It is common
for such bugs to cause a system to crash, deadlock, spin in an
infinite loop, livelock, or to develop such severe state corruption
(memory leaks, dangling pointers, damaged heap) that the only
high-confidence way of continuing is to restart the process or re-
boot the system.

The rebooting “technique” has been around as long as com-
puters themselves, and remains a fact of life for substantially
all nontrivial systems today. Rebooting can be applied at vari-
ous levels: Deadlock resolution in commercial database systems
is typically implemented by killing and restarting a deadlocked
thread in hopes of avoiding a repeat deadlock [15]. Major Inter-
net portals routinely kill and restart their web server processes
after waiting for them to quiesce, in order to deal with known
memory leaks that build up quickly under heavy load. A major
search engine periodically performs rolling reboots of all nodes
in their search engine cluster [3]. Although rebooting is often
only a crude “sledgehammer” for maintaining system availabil-
ity, its use is motivated by two common properties:

1. Restarting works around Heisenbugs. Most software
bugs in production quality software are Heisenbugs [27, 8,
17, 2]. They are difficult to reproduce, or depend on the
timing of external events, and often there is no other way
to work around them but by rebooting. Even if the source
of such bugs can be tracked down, it may be more cost-
effective to simply live with them, as long as they occur
sufficiently infrequently and rebooting allows the system to
work within acceptable parameters. The time to find and
deploy a permanent fix can sometimes be intolerably long.
For example, the Patriot missile defense system, used dur-
ing the Gulf War, had a bug in its control software that could
be circumvented only by rebooting every 8 hours. Delays in
sending a fix or the reboot workaround to the field led to 28
dead and 98 wounded American soldiers [34].

2. Restarting can reclaim stale resources and clean up cor-
rupt state. This returns the system to a known, well-tested
state, albeit with possible loss of data integrity. Corrupt or
stale state, such as a mangled heap, can lead to some of
the nastiest bugs, causing extensive periods of downtime.
Even if a buggy process cannot be trusted to clean up its
own resources, entities with hierarchically higher supervi-
sory roles (e.g., the operating system) can cleanly reclaim
any resources used by the process and restart it.

Rebooting is not usually considered a graceful way to keep a
system running – most systems are not designed to tolerate unan-
nounced restarts, hence experiencing extensive and costly down-
time when rebooted, as well as potential data loss. Case in point:
UNIX systems that are abruptly halted without calling sync().

The Gartner Group [31] estimates that 40% of unplanned
downtime in business environments is due to application failures;
20% is due to hardware faults, of which 80% are transient [8, 25],
hence resolvable through reboot. Starting from this observation,
we argue that in an appropriately designed system, we can im-
prove overall system availability through a combination of re-
actively restarting failed components (revival) and prophylacti-
cally restarting functioning components (rejuvenation) to prevent
state degradation that may lead to unscheduled downtime. Cor-
respondingly, we present initial thoughts on how to design for
recursive restartability, and outline a research agenda for system-
atic investigation of this area.

1



The paper is organized as follows: In section 2, we explain
how the property of being recursively restartable can improve a
system’s overall availability. In section 3, we present examples of
existing restartable and non-restartable systems. Section 4 iden-
tifies some required properties for recursively restartable systems
and proposes an initial design framework. Finally, in section 5,
we outline a research agenda for converting our observations into
structured design rules and software tools for building and eval-
uating recursively restartable systems. Many of the basic ideas
we leverage have appeared in the literature, but have not been
systematically exploited as a collection of guidelines; we will
highlight related work in the context of each idea.

2 Recursive Restartability Can Improve
Availability

“Recursive restartability” (RR) is the ability of a system to toler-
ate restarts at multiple levels. An example would be a software
infrastructure that can gracefully tolerate full reboots, subsystem
restarts, and component restarts. An alternate definition is pro-
vided by the following recursive construction: the simplest, base-
case RR system is a restartable software component; a general
RR system is a composition of RR systems that obeys the guide-
lines of section 4. In the present section we describe properties
of recursively restartable systems that lead to high availability.

RR improves fault tolerance. The unannounced restart of a
software component is seen by all other components as a tempo-
rary failure; systems that are designed to tolerate such restarts are
inherently tolerant to all transient non-Byzantine failures. Since
most manifest software bugs and hardware problems are short
lived [25, 27, 8], a strategy of failure-triggered, reactive compo-
nent restarts will mask most faults from the outside world, thus
making the system as a whole more fault tolerant.

RR can make restarts cheap. The fine granularity of recur-
sive restartability allows for a bounded portion of the system to be
restarted upon failure, hence reducing the impact on other com-
ponents. This way, the system’s global time-to-repair is mini-
mized (e.g., full reboots are replaced with partial restarts), which
increases availability. Similarly, RR allows for components and
subsystems to be independently rejuvenated on a rolling basis;
such incremental rejuvenation, unlike full application reboots,
makes software rejuvenation [21] affordable for a wide range of
�������

systems.
RR provides a confidence continuum for restarts. The com-

ponents of a recursively restartable system are tied together in
an abstract “restartability tree,” in which (a) siblings are well
isolated from each other by the use of simple, high-confidence
machinery, and (b) a parent can unilaterally start, stop, or re-
claim the resources of any of its children, using the same kind
of machinery. For example, in a cluster-based network service,
the root of the tree would be an administrator, each child of the
root would be a node’s OS, each grandchild a process on a node,

and each great-grandchild a kernel-level process thread. This
tree captures the tradeoff that, the closer to the root a restart oc-
curs, the more expensive the ensuing downtime, but the higher
the confidence that transient failures will be resolved. In the
above example, processes are fault-isolated from each other by
the hardware-supported virtual memory system, which is gener-
ally a high-confidence field-tested mechanism. The same mech-
anism also allows parents to reclaim process resources cleanly.
Nodes are fault-isolated by virtue of their independent hardware.
When a bug manifests, we can use a cost-of-downtime/benefit-
of-certainty tradeoff to decide whether to restart threads, pro-
cesses, nodes, or the entire cluster.

RR enables flexible availability tradeoffs. The proposed re-
juvenation/revival regimen can conveniently be tailored to best
suit the application and administrators: it can be simple (reboot
periodically) or sophisticated (differentiated restart treatment for
each subsystem/component). Identical systems can have differ-
ent revival and rejuvenation policies, depending on the appli-
cation’s requirements and the environment they are in. Sched-
uled non-uniform rejuvenation can transform unplanned down-
time into planned, shorter downtime, and it gives the ability
to more often rejuvenate those components that are critical or
more prone to failure. For example, a recent history of revival
restarts and load characteristics can be used to automatically de-
cide how often each component requires rejuvenation. Simpler,
coarse-grained solutions have already been proposed by Huang
et al. [21] and are used by IBM’s xSeries servers [22].

3 Existing Systems

Very few systems today can be classified as being recursively
restartable. Many systems do not tolerate restarts at all, and we
provide some examples in this section. Others, though not nec-
essarily designed by following an existing set of RR principles,
fortuitously exhibit RR-friendly properties. Our long term goal
is to derive a canon of design rules, including tradeoffs and pro-
gramming model semantics, so that future efforts will be more
systematic and deliberate.

3.1 Poorly Restartable Systems

In software systems not designed for restartability, the transient
failure of one or more components often ends up being treated
as a permanent failure. Depending on the system’s design,
the results can be anywhere from inconvenient to catastrophic.
NFS [30] exhibits a flavor of this problem in its implementa-
tion of locking: a crash in the lock subsystem can result in an
inconsistent lock state between a client and the server, which
sometimes requires manual intervention by an administrator to
repair. The result is that many applications requiring file locks
test whether they are running on top of NFS and, if so, perform
their own locking using the local filesystem, thereby defeating
the NFS lock daemon’s purpose.

2



As a more serious example, in July 1998, the USS Yorktown
battleship lost control of its propulsion system due to a string
of events started by a data overflow. Had the overall system
been recursively restartable, its components could have been in-
dependently restored, avoiding the need to have the entire missile
cruiser towed back to port [10].

Many UNIX applications use the /tmp directory for tempo-
rary files. Should /tmp become unavailable (e.g., due to a disk
upgrade), programs will typically hang in the I/O system calls.
Consequently, these monolithic, tightly coupled applications be-
come crippled and cannot be restarted without losing all the work
in progress.

Tightly coupled operating systems belong in this category as
well. For example, Windows NT depends on the presence of cer-
tain system libraries (DLLs); accidentally deleting one of them
can cause the entire system to hang, requiring a full reboot and
the loss of all applications’ work in progress. In the ideal case,
an administrator would be able to replace the DLL and restart
the dependent component, allowing the system to continue run-
ning. If the failed component was, say, the user interface on a
machine running a web server, RR would allow availability of
the web service to be unaffected. The ability to treat operating
system services as separate components can avoid these failures,
as evidenced by true microkernels [1, 24].

3.2 Restartability Winners

The classic replicated Internet server configuration has � in-
stances of a server for a population of � users, with each server
being able to handle in excess of � � � users. In such systems,
node reboots result simply in a transient � � � throughput loss.
Moreover, read-only databases can be striped across these in-
stances such that each node contributes a fixed fraction of ���
(data/query

�
queries/unit time) [4]. Independent node reboots

or transient node failures result solely in decreased data/query,
while keeping overall queries/unit time constant. Such a design
makes “rolling rejuvenation” very affordable [3].

At major Internet portals, it is not uncommon for newly hired
engineers to write production code for the system after little more
than one week on the job. Simplicity is stressed above all else,
and code is often written under the explicit assumption that it
will necessarily be killed and restarted frequently. This affords
programmers such luxuries as never calling free() in their C
code, thereby avoiding an entire class of pernicious bugs.

Finally, NASA’s Mars Pathfinder illustrates the value of
coarse-grained reactive restarts. Shortly after landing on Mars,
the spacecraft identified that one of its processes failed to com-
plete execution on time, so the control software decided to restart
all the hardware and software [28]. Despite the fact that the soft-
ware was imperfect — it was later found that the hang had been
caused by a hard-to-reproduce priority-inversion deadlock — the
watchdog timers and restartable control system saved the mission
and helped it exceed its intended lifetime by a factor of three.

4 The Restart Scalpel: Toward Structured
Recursive Restartability

In proposing RR, we are inspired by the effect of introducing
ACID (atomic, consistent, isolated, durable) transactions [16]
as a building block many years ago. Not only did transactions
greatly simplify the design of data management systems, but they
also provided a clean framework within which to reason about the
error behavior of such systems. Our goal is for recursive restarta-
bility to offer the same class of benefits for systems where ACID
semantics are not required or are expensive to engineer, given the
system’s availability or performance goals. In particular, we ad-
dress systems in which weaker-than-ACID requirements can be
exploited for tradeoffs that improve availability or simplicity of
construction.

In this section we make some observations about the properties
of RR-friendly systems, and propose guidelines for how RR sub-
systems can be assembled into more complex RR systems. The
overarching theme is that of designing applications as loosely
coupled distributed systems, even if they are not distributed in
nature.

Accepting No for an answer. Software components should be
designed such that they can deny service for any request or call.
Then, if an underlying component can say No, applications must
be designed to take No for an answer and decide how to proceed:
give up, wait and retry, reduce fidelity, etc. Such components can
then gracefully tolerate the temporary unavailability of their peer,
as evidenced in the cluster-based distributed hash table described
by Gribble et al. [19]. Dealing with No answers in the callers, as
opposed to trying to cope with them in the server, closely follows
the end-to-end argument [29]. Moreover, Lampson observes that
such error handling is absolutely necessary for a reliable system
anyway [23].

Subsystems should make their interface guarantees suffi-
ciently weak, so they can occasionally restart with no ad-
vance warning, yet not cause their callers to hang/crash.

Using reconstructable soft state with announce/listen pro-
tocols. Soft state and announce/listen have been extensively used
at the network level [37, 9] as well as the application level [12].
Announce/listen makes the default assumption that a component
is unavailable unless it says otherwise; soft state can provide
information that will carry a system through a transient failure
of the authoritative data source for that state. The use of an-
nounce/listen with soft state allows restarts and “cold starts” to
be treated as one and the same, using the same code path. More-
over, complex recovery code is no longer required, thus reducing
the potential for latent bugs and speeding up recovery.

Unfortunately, sometimes soft state systems cannot react
quickly enough to deliver service within their specified time
frame. Use of soft state implies tolerance of some state incon-
sistency, and sometimes the state may never stabilize. For exam-

3



ple, in a soft-state load balancer for a prototype scalable network
server [14], the instability manifested as alternating saturation
and idleness of workers. This was due to load balancing decisions
based on worker load data that was too old. Mitzenmacher [26]
derives a quantitative analytical model to capture the costs and
benefits of using such stale information, and his model’s predic-
tions coincide with behavior observed in practice. This type of
problem can be addressed by increasing refresh frequency, albeit
with additional bandwidth and processing overhead.

State shared among subsystems should be mostly soft.
The extent of soft state depends on (a) the application’s
convergence and response-latency requirements and (b)
the refresh frequency supported by the inter-component
communication substrate (which is a function not only of
“raw” bandwidth and latency but also of “goodput”).

Automatically trading precision or consistency for avail-
ability. Online aggregation [20], harvest/yield tradeoffs [13],
and distributed databases such as Bayou [33] are examples of dy-
namic or adaptive trading of some property, usually either consis-
tency or precision, for availability. Recently, TACT [36] showed
how such tradeoffs could be brought to bear on systems em-
ploying replication for high availability, by using a framework
in which consistency degradation is measured in application-
specific units. The ability to make such tradeoffs dynamically
and automatically during transient failures makes a system much
more amenable to RR.

Inter-component “glue” protocols should allow compo-
nents to make dynamic decisions on trading consis-
tency/precision for availability, based on both application-
specific consistency/precision measures, and a consis-
tency/precision utility function (e.g., “a perfectly consis-
tent answer is twice as good as one missing the last two
updates,” or “a 100% precise answer is twice as good as a
90% precise answer”).

Structuring applications around fine grain workloads. A
primary example of fine grain workload requirements comes
from HTTP: the Web’s architecture has challenged application
architects to design mechanisms for state maintenance and ses-
sion identification, some more elegant than others. The result is
that the Web as a whole exhibits the desirable property that in-
dividual server processes can be quiesced rapidly, since HTTP
connections are typically short-lived, and servers are extremely
loosely bound to their clients, given that the protocol itself is
stateless. This makes them highly restartable and leads directly
to the simple replication and failover techniques found in large
cluster-based Internet services.

“Glue” protocols should enforce fine grain interactions
between subsytems. They should provide hooks for com-
puting the cost of a subsystem’s restart based on the ex-
pected duration of its current task and its children’s tasks.

Using orthogonal composition axes. Independent subsys-
tems that do not require an understanding of each other’s func-
tionality are said to be mutually orthogonal. Compositions
of orthogonal subsystems exhibit high tolerance to component
restarts, allowing the system as a whole to continue function-
ing (perhaps with reduced utility) in spite of temporary failures.
There is a strong connection between good modular structure
and the ability to exploit orthogonal mechanisms; systems that
exploit them well seem to go even further: their control flows
are completely decoupled, influencing each other only indirectly
through explicit message passing. Examples of orthogonal mech-
anisms include deadlock resolution in databases [15], software-
based fault isolation [35], as well as heartbeats and watchdogs
used by process peers that monitor each others’ liveness [14, 7].

Split functionality along orthogonal axes. Each corre-
sponding subsystem should be centered around an inde-
pendent locus of control, and interact with other subsys-
tems via events posted using an asynchronous mechanism.

5 Research Agenda and Evaluation

After refining the above design guidelines, evaluation of a RR
research agenda will consist of answering at least three major
categories of questions:

� What classes of applications are amenable to RR? What
model would capture the behavior of these applications and
allow them to be compared directly?

� How do we quantify the improvements in availability and the
possible losses in performance, consistency or other function-
ality that may result from the application of RR?

� What software infrastructure and tools are necessary to exe-
cute the proposed automatic revival/rejuvenation policy?

5.1 Building RR Systems

Some existing applications, most notably Internet services, are
already incorporating a subset of these techniques (usually in an
ad hoc fashion) and are primary candidates for systematic RR.
Similarly, many geographically dispersed systems can benefit if
they tolerate weakened consistency, due to the potential lack of
reliability in their communication medium. We suspect the spec-
trum of applications that are amenable to RR is much wider, but
still needs to be explored.

Loosely coupled architectures often exhibit emergent proper-
ties that can lead to instability (e.g., noticed in Internet rout-

4



ing [11]) and investigating them is important for RR. There is
also a natural tension between the cost of restructuring a system
for RR and the cost (in downtime) of restarting it. Fine mod-
ule granularity improves the system’s ability to tolerate partial
restarts, but requires the implementation of a larger number of
internal, asynchronous interfaces. The paradigm shift required of
system developers could make RR too expensive in practice and,
when affordable, may lead to buggier software. In some cases
RR is simply not feasible, such as for systems with inherent tight
coupling (e.g., real-time closed-loop feedback control systems).

Finally, the key to wide adoption of recursive restartability are
tools that can aid the software architect in deciding when to use
a RR structure and how to apply the RR guidelines.

5.2 Quantifying Availability and the Effects
of Recursive Restartability

A major contribution of the transaction concept was the emer-
gence of a model, TP systems, that allowed different imple-
mentations of data management systems to be directly compared
(e.g., using TPC benchmarks [18]). We are seeking an analogous
model that characterizes applications possessing RR properties,
and that can serve in quantifying availability.

Availability benchmarking has been of interest only for the
past decade [32, 5]. It is considerably more difficult than per-
formance benchmarking, because a fault model is required in ad-
dition to a workload, and certain aspects, such as software aging,
cannot even be captured reliably. Performance benchmark re-
sults that ignore availability measurements, such as “our system
obtained 300,000 tpmC”, are dishonest — a fast system that is
hung or crashed is simply an infinitely slow system. The con-
verse holds for avalability benchmarks as well, so we seek a uni-
fied approach to the measurement of RR systems.

Given an application amenable to RR, a model, and a suit-
able benchmark, we must quantify the improvement in availabil-
ity and the decrease in functionality (reduced precision, weaker
consistency, etc.) when specific RR rules are applied. We expect
that work such as TACT [36] and Mitzenmacher’s models for
usefulness of stale information [26] will provide a starting point
for quantitative validation of RR.

We will identify application classes that, compared to their cur-
rent implementations, are more tolerant of our guidelines (e.g.,
trading precision for availability). We will restructure the appli-
cations incrementally, while maintaining their semantics largely
intact. Availability will be evaluated at different stages: (1) initial
application; (2) recursively restartable version of the application;
(3) RR version using our execution infrastructure (described be-
low), with revival restarts; (4) RR version using the execution
infrastructure with both revival and rejuvenation restarts.

5.3 RR Infrastructure Support

Recursively restartable systems rely on a generic execution in-
frastructure (EI) which is charged with instantiating the restarta-
bility tree mentioned in section 2, monitoring each individual
component and/or subsystem, and prompting restarts when nec-
essary. In existing restartable systems, the EI homologue is usu-
ally application-specific and built into the system itself.

The execution infrastructure relies on a combination of pe-
riodic application-specific probes and end-to-end checks (such
as verifying the response to a well-known query) to determine
whether a component is making progress or not. In most cases,
application-specific probes are implemented by the components
themselves via callbacks. When the EI detects an anomaly, it ad-
vises the faulty component that it should clean up any pending
state because it is about to be restarted by its immediate ancestor
in the restartability tree. An analogy would be UNIX daemons
that understand the “kill -TERM; sleep 5; kill -9”
idiom. If restarting does not eliminate the anomaly, a restart at a
higher level of the hierarchy is attempted, similar to the return up
a recursive call structure.

Note how the availability problem itself becomes recursive:
we now need a highly available infrastructure that cares for the
RR system. Medusa [6], our EI prototype, is functionally much
simpler than most applications, making it possible to design and
implement it with care. Medusa is built out of simple, highly
restartable segments that run on different hosts, use multicast
heartbeats to keep track of each other and their activity, and self-
reinstantiate to replace dead segments.

6 Conclusion

In this paper we took the view that transient failures will continue
plaguing the software infrastructures we depend on, and thus re-
boots are here to stay. We proposed turning the reboot from a
demonic concept into a reliable partner in the fight against sys-
tem downtime, given that it is a time-tested, effective technique
for circumventing Heisenbugs.

We defined recursively restartable (RR) systems as being those
systems that tolerate successive restarts at multiple levels. Such
systems possess a number of valuable properties that by them-
selves improve availability. For instance, a RR system’s fine
granularity permits partial restarts to be used as a form of
bounded healing, reducing the overall time-to-repair, and hence
increasing availability. On top of these desirable intrinsic proper-
ties, we can employ an automated, recursive policy of component
revival/rejuvenation to further reduce downtime.

Building RR systems in a systematic way requires a frame-
work consisting of well-understood design rules. A first attempt
at formulating such a framework was presented here, advocat-
ing the paradigm of building applications as distributed systems,
even if they are not distributed in nature. We set forth a research
agenda aimed at validating these proposals and verifying that re-

5



cursive restartability can be an effective supplement to existing
high availability mechanisms. With recursive restartability, we
hope to add a useful item to every system architect’s toolbox.

7 Acknowledgments

We thank Peter Chen, David Cheriton, Jim Gray, Steve Gribble,
Butler Lampson, David Lowell, Udi Manber, Dejan Milojicic,
Milyn Moy, and Stanford’s Mosquitonet and SWIG groups for
helpful and stimulating comments on the ideas presented here.

References

[1] M. J. Accetta, R. V. Baron, W. J. Bolosky, D. B. Golub, R. F.
R. A. Tevanian, and M. Young. Mach: A new kernel foundation
for UNIX development. In Proceedings of the USENIX Summer
Conference, pages 93–113, 1986.

[2] E. Adams. Optimizing preventative service of software products.
IBM J. Res. Dev., 28(1):2–14, 1984.

[3] E. Brewer. Personal communication. 2000.

[4] E. Brewer. Lessons from giant-scale services (draft). Submitted
for publication, 2001.

[5] A. Brown and D. A. Patterson. Towards availability benchmarks:
A case study of software RAID systems. In Proceedings of the
USENIX Annual Technical Conference, San Diego, CA, June 2000.

[6] G. Candea. Medusa: A platform for highly available execution.
CS244C (Distributed Systems) course project, Stanford University,
http://stanford.edu/˜candea/papers/medusa,
June 2000.

[7] Y. Chawathe and E. A. Brewer. System support for scalable and
fault tolerant internet service. In IFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing
(Middleware ’98), Lake District, UK, Sep 1998.

[8] T. C. Chou. Beyond fault tolerance. IEEE Computer, 30(4):31–36,
1997.

[9] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu, L. Wei,
P. Sharma, and A. Helmy. Protocol independent multicast (PIM),
sparse mode protocol: Specification, March 1996. Internet Draft.

[10] A. DiGiorgio. The smart ship is not enough. Naval Institute Pro-
ceedings, 124(6), June 1998.

[11] S. Floyd and V. Jacobson. The synchronization of periodic routing
messages. IEEE/ACM Transactions on Networking, 2(2):122–136,
Apr. 1994.

[12] S. Floyd, V. Jacobson, C. Liu, and S. McCanne. A Reliable Multi-
cast Framework for Light-Weight Sessions and Application Level
Framing. In ACM SIGCOMM ’95, pages 342–356, Boston, MA,
Aug 1995.

[13] A. Fox and E. A. Brewer. ACID confronts its discontents: Harvest,
yield, and scalable tolerant systems. In Seventh Workshop on Hot
Topics In Operating Systems (HotOS-VII), Rio Rico, AZ, March
1999.

[14] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier.
Cluster-Based Scalable Network Services. In Proceedings of the
16th ACM Symposium on Operating Systems Principles (SOSP-
16), St.-Malo, France, October 1997.

[15] J. Gray. Notes on data base operating systems. In R. Bayer, R. M.
Graham, J. H. Saltzer, and G. Seegmüller, editors, Operating Sys-
tems, An Advanced Course, volume 60, pages 393–481. Springer,
1978.

[16] J. Gray. The transaction concept: Virtues and limitations. In Pro-
ceedings of VLDB, Cannes, France, September 1981.

[17] J. Gray. Why do computers stop and what can be done about
it? In Proc. Symposium on Reliability in Distributed Software and
Database Systems, pages 3–12, 1986.

[18] J. Gray. The Benchmark Handbook for Database and Transaction
Processing Systems. Morgan Kaufman, 2 edition, 1993.

[19] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler. Scal-
able, distributed data structures for internet service construction.
In Proc. Fourth Symposium on Operating Systems Design and Im-
plementation (OSDI 2000), San Diego, CA, October 2000.

[20] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggrega-
tion. In ACM–SIGMOD International Conference on Management
of Data, Tucson, AZ, May 1997.

[21] Y. Huang, C. M. R. Kintala, N. Kolettis, and N. D. Fulton. Software
rejuvenation: Analysis, module and applications. In International
Symposium on Fault-Tolerant Computing, pages 381–390, 1995.

[22] International Business Machines. IBM director software rejuvena-
tion. White paper, Jan. 2001.

[23] B. W. Lampson. Hints for computer systems design. ACM Oper-
ating Systems Review, 15(5):33–48, 1983.

[24] J. Liedtke. Toward real microkernels. Communications of the
ACM, 39(9):70–77, 1996.

[25] D. Milojicic, A. Messer, J. Shau, G. Fu, and A. Munoz. Increas-
ing relevance of memory hardware errors. a case for recoverable
programming models. In ACM SIGOPS European Workshop ”Be-
yond the PC: New Challenges for the Operating System”, Kolding,
Denmark, Sept. 2000.

[26] M. Mitzenmacher. How useful is old information? In Principles
of Distributed Computing (PODC) 97, pages 83–91, 1997.

[27] B. Murphy and N. Davies. System reliability and availability
drivers of Tru64 UNIX. In Proceedings of the 29th International
Symposium on Fault-Tolerant Computing, Madison, WI, February
1999. IEEE Computer Society. Tutorial.

[28] G. Reeves. What really happened on Mars? RISKS-19.49, Jan.
1998.

[29] J. Saltzer, D. Reed, and D. Clark. End-to-end arguments in system
design. ACM Transactions on Computer Systems, 2(4):277–288,
Nov. 1984.

[30] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon.
Design and implementation of the Sun network filesystem. In
Proceedings of the USENIX Summer Conference, pages 119–130,
Portland, OR, 1985.

[31] D. Scott. Making smart investments to reduce unplanned down-
time. Tactical Guidelines Research Note TG-07-4033, Gartner
Group, Stamford, CT, 1999.

[32] D. P. Siewiorek, J. J. Hudak, B.-H. Suh, and Z. Segall. Develop-
ment of a benchmark to measure system robustness. In Proceed-
ings of the International Symposium on Fault-Tolerant Computing,
pages 88–97, 1993.

[33] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M.
Theimer, and B. B. Welch. Session guarantees for weakly consis-
tent replicated data. In Proceedings of the International Confer-
ence on Parallel and Distributed Information Systems, pages 140–
149, Austin, TX, Sept. 1994.

[34] U.S. General Accounting Office. Patriot missile defense: Software
problem led to system failure at Dhahran, Saudi Arabia. Technical
Report GAO/IMTEC-92-26, 1992.

[35] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
Software-Based Fault Isolation. In Proceedings of the 14th ACM
Symposium on Operating Systems Principles (SOSP-14), 1993.

[36] H. Yu and A. Vahdat. Design and evaluation of a continuous
consistency model for replicated services. In Proceedings of the
Fourth Symposium on Operating Systems Design and Implementa-
tion, Oct. 2000.

[37] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala.
RSVP: A New Resource Reservation Protocol. IEEE Network,
7(5), Sept. 1993.

6


