
Path-Based Failure and Evolution Management

Mike Y. Chen, Anthony Accardi, Emre Kıcıman, Jim Lloyd, Dave Patterson, Armando Fox, Eric Brewer

UC Berkeley, Tellme Networks, Stanford University, eBay Inc.

{mikechen, patterson, brewer}@cs.berkeley.edu, anthony@tellme.com, {emrek, fox}@cs.stanford.edu, jlloyd@ebay.com

Abstract
We present a new approach to managing failures and

evolution in large, complex distributed systems using
runtime paths. We use the paths that requests follow as
they move through the system as our core abstraction,
and our “macro” approach focuses on component inter-
actions rather than the details of the components them-
selves. Paths record component performance and inter-
actions, are user- and request-centric, and occur in suf-
ficient volume to enable statistical analysis, all in a way
that is easily reusable across applications. Automated
statistical analysis of multiple paths allows for the de-
tection and diagnosis of complex failures and the assess-
ment of evolution issues. In particular, our approach en-
ables significantly stronger capabilities in failure detec-
tion, failure diagnosis, impact analysis, and understand-
ing system evolution. We explore these capabilities with
three real implementations, two of which service millions
of requests per day. Our contributions include the ap-
proach; the maintainable, extensible, and reusable ar-
chitecture; the various statistical analysis engines; and
the discussion of our experience with a high-volume pro-
duction service over several years.

1 Introduction
The rise of large, highly available, networked systems

[10, 26] reinforces a trend towards complex, heteroge-
neous architectures composed of distributed, replicated
components. Such systems may be built from thousands
of machines, each running a diverse set of software com-
ponents that exhibit complicated interactions [18, 23].
This trend undermines basic system management tasks,
from detecting and diagnosing failures to understanding
current and future system behavior. Although there are
many tools for dealing with individual components, such
tools are less effective in understanding aggregate system
behavior, and worse, lose sight of the impact of specific
components on the user experience.

Existing monitoring and debugging techniques use
tools such as code-level debuggers, program slicing
[53], code-level and process profiling [22, 31, 42], and
application-level logs. Although these techniques pro-
vide valuable information about individual components,
this localized knowledge fails to capture the component
interactions that characterize the overall system behavior
and determine the user experience. Although some tools,

such as distributed debuggers, cover multiple compo-
nents, they focus on a homogeneous subset of the system
and usually consider one node at a time. Some such tools
require additional component knowledge, which may be
difficult to obtain for “black box” components.

Our goal is to design tools that help us understand
large distributed systems to improve their availability,
reliability, and manageability. We trace paths from
user requests, through distributed black-box compo-
nents, until service completes. Examples include the re-
quest/response interaction in Internet systems and one-
way flows in messaging systems. We apply statistical
techniques to the data collected along these paths to in-
fer system behavior. We draw on two main principles:

Path-Based Measurement:We model the target sys-
tem as a collection of paths through abstract, black-
box, heterogeneous components. Local observa-
tions are made along these paths, which are later
accessed via query and visualization mechanisms.

Statistical Behavior Analysis: Large volumes of sys-
tem requests are amenable to statistical analysis.
We use classical techniques to automatically iden-
tify statistically significant deviations from normal
behavior for both performance and correctness, and
for both live system operation and off-line analysis.

The path abstraction has been used in many other ar-
eas, typically as a form of control flow. Paths are used
in Scout for a single-node OS [38], are the foundation
for integrated-layer-processing [1], and play a key role
in many compiler optimization techniques [5]. Several
recent systems have also used paths to profile distributed
systems. Magpie [7] and WebMon [49] both trace
web requests across multi-tiered web systems for perfor-
mance tuning and diagnosis. Aguileraet al. present both
statistical and message-by-message algorithms to infer
causal paths and thereby debug performance problems in
distributed systems of black boxes [3].

Our use of paths is novel in that we focus on correct-
ness rather than performance. We use paths to detect and
diagnose failures, and to understand the evolution of a
system. Although we have also applied paths to profile
the performance of two large production services, this
work is less novel and we omit it for space.

We stress that our “macro” approach [12], where we
focus on component-level abstractions over component



Path Framework Site Description Physical Tiers# of MachinesLive Requests Apps Hosted

Pinpoint - research prototype 2-3 - - Java
ObsLogs Tellme enterprise voice application network - hundreds millions/day VoiceXML[55]
SuperCal eBay online auction 2-3 thousands millions/day C++, Java

Table 1:A comparison of three systems that support path-based analysis.

details, complements and does not replace traditional
component-oriented systems approaches. We often use
such tools to flesh out issues identified via macro analy-
sis. For example, our failure diagnosis typically can de-
termine the specific requests and component(s) involved
in a failure, but resolving the actual cause may require
looking at source code or component logs.

In this paper we apply path-based macro analysis to
two broad classes of tasks encountered with large, dis-
tributed systems: failure management and evolution.

Failure Managementconsists of the full process of
detection, diagnosis, and repair of hardware and software
failures. Paths help with three tasks in particular:

Detection: Failures can result in unplanned downtime,
and failure detection remains a hard problem, espe-
cially at the application level. Tellme Networks, one
of the two commercial sites we have analyzed, esti-
mates that roughly 75% of application-level failure
recovery time is spent on detection. The difficulty
is that overt symptoms caused by abnormal compo-
nent behavior or bad component interactions may
only be visible to the user. However, such prob-
lems can impact path structure in many ways, af-
fecting control flow, path latency profiles, and user
behavior. Using paths, we can reduce failure de-
tection time and notice developing problems before
the consequences become more severe. The key ap-
proach is to define “normal” behavior statistically,
and then to detect statistically significant deviations.

Diagnosis: Traditionally, once a failure is reported, en-
gineers attempt to reproduce the problem with a
simulated workload and verbose logging enabled,
and proceed to correlate events in logs on different
machines to reconstruct the failure timeline. Our
approach differs in that our goal is to isolate prob-
lems using solely the recorded path observations,
and to subsequently drive the diagnosis process with
this path context. This works because correlations
across the large number of paths that traverse the
system imply which components and requests are
involved (and not involved!) in a given failure sce-
nario. This typically requires only a few queries
once a failure is detected, and allows us to quickly
identify and rank probable root causes. We can also
“trap” errors by increasing the amount of detailed
logging for isolated components in a live system.

Impact Analysis: After a problem is diagnosed, we
would like to understand the impact that it had
on users. In this case, we are estimating how
many paths have the same profile as the faulty path.
Knowing the scale of the problem allows us to pri-
oritize the solution. In the case of failures that affect
a Service-Level Agreement (SLA), such as an error
in an ad server, impact analysis allows us estimate
the damage and determine compensation.

Evolution is challenging for these systems because it
is very difficult to replicate the precise timing and be-
havior of the production system. Thus most upgrades are
rolled out in stages to a live system after extensive testing
on a smaller “test system” with a simulated load. Sys-
tems evolve through both changes to their components
and changes in how they interact. Paths help by reveal-
ing the actual system structure and dependencies, and
tracking how they change. More importantly, our statis-
tical approach allows us to simultaneously detect a wide
range of performance and correctness issues across sys-
tem versions. For each statistically significant change,
we can drill down to understand the requests and com-
ponents affected. This allows for both the validation of
expectedchanges as well as the detection and diagnosis
of unexpectedchanges.

We present our evaluation of path-based analysis on
three implementations, summarized in Table 1.

Pinpoint is an analysis framework for an open-source,
3-tier Java 2 Enterprise Edition (J2EE) [47] appli-
cation platform, JBoss [30].

ObsLogs are part of a path-based infrastructure at
Tellme Networks, an enterprise voice application
network.

SuperCal is the logging infrastructure at eBay, an on-
line auction site.

eBay and Tellme are geo-redundant systems. We be-
lieve, but do not show, that paths apply equally well
to wide-area distributed systems, including peer-to-peer
networks and sensor networks. The primary limitation of
our approach is the need to aggregate the logs for anal-
ysis (described in the next two sections), as we do not
present a wide-area distributed query system.

For our purposes, JBoss, eBay, and Tellme’s net-
work can be considered cluster-based application servers
that provide a platform upon which applications are



Figure 1: Path-based analysis architecture, illustrating the collec-
tion of observationsfrom Tracersvia theAggregatorfor storage in the
Repository. VariousAnalysis Enginesperform statistical or visual anal-
yses of path data via theQuery Engine.

developed and run. Legacy applications can take advan-
tage of our path-based tools without modification.

Although Pinpoint is a research prototype, Tellme’s
real-time, geo-redundant system has serviced many bil-
lions of requests since the end of 2001, when ObsLogs
(short for Observation Logs) were deployed. eBay ser-
vices hundreds of millions of requests a day, all of which
are monitored using SuperCal, producing hundreds of gi-
gabytes of compressed SuperCal logs.

We will describe our analysis framework before pre-
senting our two main applications: failure management
and evolution. In Section 2 we explain our path analysis
architecture. We describe relevant implementation de-
tails in Section 3. In Section 4, wedetectfailures based
on deviations in path structure and interval distributions,
show how to accurately and quicklydiagnosesuch fail-
ures, and gauge their importance viaimpact analysis. We
show how toevolvethe system by deducing structure and
regressing changes across system and application ver-
sions in Section 5. Finally, we discuss lessons learned
in Section 6, and related work in Section 7.

2 Design

Our primary architectural goals are to enable path-
based measurement for a variety of systems and to de-
couple the recording, storage, and analysis functionality,
so that these subsystems may scale and evolve indepen-
dently. Because we are interested in real failures, the
framework must be feasible to use on a live system.

In a path-based implementation, a path is a collec-
tion of observations, which are local, discrete system
measurements at particular points during the system’s
response to a request. Example observations include

Figure 2:Breaking down a phone call into overlapping paths: each
box represents the logical extent of the path, while arrows illustrate the
actual range of observations. After connecting, the user says “news”,
and then later “top stories”.

timestamps, component and host names, and version
numbers. The observations are recorded by Tracers,
shown in Figure 1, and the path data is aggregated,
stored, and analyzed statistically or visualized. After
defining paths, we describe the main modules of Figure
1 in more detail.

2.1 Defining Paths

A path embodies the control flow, resources, and per-
formance characteristics associated with servicing a re-
quest. We use the term “request” in a broad sense for
whenever any external entity asks the system to perform
some action. The request may result in a response de-
livered back (e.g., HTTP) or in some action with remote
consequences (e.g., UDP packets). Paths may have inter-
path dependencies through shared state or resources such
as database tables, file systems, or shared memory.

Multiple paths are often grouped together insessions,
just as a user’s requests collectively contribute to a
higher-level goal. Multiple stateless HTTP requests may
be tied together with a cookie containing a session ID.
For P2P systems, a lookup session may contain several
one-way message paths, including queries and result de-
livery. On Tellme’s network, a phone call is a session.

Pinpoint and SuperCal use the natural definition of
a path for web services: a web server’s response to an
HTTP request. The Tellme system paths, shown in Fig-
ure 2, need more explanation. VoiceXML end users call
a phone number, interact with the system via speech and
touch-tone, and ultimately end their call by hanging up
or transferring to another number. The user is usually
undertaking a high-level application-specific task, such
as retrieving driving directions or placing stock trades.

A request-response interaction occurs whenever the
user waits for the system to respond. Since the behav-
ior of these response paths directly characterizes a user’s
experience with the system, and serves as a foundation
upon which successful applications can be built, under-
standing this behavior is extremely important. We thus
define paths in Tellme’s network as originating when
a user provides input and ending when the system re-
sponds. For example, a user initiates a path by speaking



and ends when they hear an aural response. For com-
pleteness, we also record path information past these log-
ical endpoints, as shown in Figure 2.

3 Implementation
We describe our path-based macro analysis implemen-

tations, organized by the subsystems shown in Figure 1.

3.1 Tracers
Tracers are responsible for tracking a request through

the target system and recording any observations made
along the way. Our approach is to associate each request
with a unique identifier at the system entry point, and to
maintain this association throughout. This is similar to
Magpie [7] and WebMon, although our tracers record ad-
ditional information such as resource dependencies and
version numbers for failure analysis. We do not record
all low-level resources, such as the network packets that
Magpie tracks. Although paths may be inferred without
them [3, 36], explicit path identifies are essential in link-
ing specific observations with specific failures.

We require that the request identifier be accessible
from all areas of the platform that make observations.
If threads process requests one at a time, storing IDs in
thread-local storage is an attractive option. If protocols
with extensible headers are used, such as HTTP or SOAP,
we can add the ID as part of a header. Failing that, we can
modify the existing protocols, interfaces, class members,
etc., so that the request ID follows the control flow.

Alternatively, the entire path state, including the ID
and all recorded observations, can be threaded through
the system. This simplifies observation aggregation, but
there is overhead in moving observations through com-
ponent boundaries. To optimize performance, we use
both techniques: the entire path state where shared mem-
ory is available, and just the request ID otherwise.

Although Tracers are platform-specific, they can re-
main application-generic for platforms that host applica-
tion components (e.g., J2EE, .NET [35]). This can be
done by monitoring requests at application component
boundaries, or, more generally, by recording platform-
internal notions of content (e.g., URLs, module names,
function symbols) along paths.

Pinpoint, ObsLogs, and SuperCal all have platform
Tracers to enable monitoring for all applications, with-
out modification. We also provide interfaces for appli-
cation developers to insert their own data, such as data
hashes and references to other data sources, so that in the
extreme case, all system logging may be done via paths.

3.1.1 Pinpoint

We modified the Jetty web server to generate a unique
ID for each HTTP request. Because Jetty is integrated
with JBoss in the same JVM and has a simple threading

model, we use Java’s ThreadLocal class to store request
IDs. When the server invokes a remote Enterprise Java
Bean (EJB), our modified Remote Method Invocation
protocol passes the ID transparently to the target EJB.

We augmented the Java Server Pages (JSP), Servlets,
EJB containers, and JDBC driver to report observations
on component and database usage. These observation
points report the names of the application component,
the methods invoked, and the SQL queries. The total
code modification was less than 1K lines, and took about
a week of a graduate student’s time.

3.1.2 ObsLogs

To minimize performance overhead and optimize for
observation insertion, we store the in-process portion of
each path in a linked list of fixed-size memory segments.
Each observation contains a table index, relative times-
tamp, and identifier, for a total of 12 bytes. The index
identifies the precise location in the system where the ob-
servation was made, and the identifier points to other log-
ging sources that provide further contextual information.
Recording an observation simply involves copying these
12 bytes into (usually) pre-allocated memory. At cur-
rent usage levels on modern hardware, there is no statis-
tically significant measurable impact on the CPU usage
and end-to-end latencies of the instrumented processes.

The Tellme platform also records how paths interact.
Paths may split as parallel subtasks, merge when re-
sults are aggregated, or interrupt each other during an
abort. All these behaviors are easily tracked since the
path state follows the underlying logic: path pointers
may be passed to multiple software modules each work-
ing on a subtask, code that aggregates results may link
one path pointer to another, etc. Using the path identi-
fiers, paths across different processes may be logged in
pieces and fully reconstructed by the Aggregator.

3.2 Aggregator and Repository

The Aggregator receives observations from the Trac-
ers, reconstructs them into paths using the request IDs„
and stores them in the Repository. The path data may
flow from distributed local storage to a central data
repository, and filters may be applied to reduce the data
volume, creating a multi-tiered cache for paths.

Pinpoint supports two independent logging modes.
The first uses the asynchronous Java Messaging Service
to publish observations to (remote) subscribers. In the
second mode, observations are written directly to local
storage. We use Java’s serialization routines to store
and retrieve paths from files, and can insert paths into
MySQL and Oracle databases over JDBC.

Although Tellme’s Tracers frequently process paths
with many hundreds of observations, this data rate cannot
be sustained with disk writes on the critical path; such



delays impact the user experience. Hiccups on the or-
der of several hundred milliseconds are intolerable along
this critical path, so blocking disk writes are performed
by another, dedicated thread. This thread also imple-
ments a dynamically configurable filter, so that observa-
tions within a path are selectively logged based on the
structure and latency profile of that path. For example,
we may only wish to log a particular observation if an-
other specific observation is present in the same path, or
if a pair of observations were made far enough away from
each other in time. This way, we can specify greater log-
ging detail for paths of particular interest.

Observations are always recorded internally, so that all
path details are available in a core file, but only criti-
cal observations (including those required by monitoring
logic) are regularly written to disk. Once on disk, Obs-
Logs are aggregated and stored remotely.

3.3 Analysis Engines and Visualization

We support both single and multi-path analysis, and
use dedicated engines to run various statistical tests.
Simpler algorithms can be executed in a database, since
descriptive statistics such as mean, count, and sum are
cheap SQL operations. Some data mining tools are also
supported by Oracle [40], so more complicated algo-
rithms such as clustering and classification can be per-
formed, although off-line analysis is a better option at
scale. We also use analysis engines written in C++, Java,
and Perl, including non-parametric two-sample and anal-
ysis of variance (ANOVA) [44] tests.

Visualization is another analysis engine that comple-
ments statistical test output to help engineers and opera-
tors quickly understand system behavior. We have found
Tukey’s boxplots1 useful in summarizing distributions,
and survivor plots2 helpful when focusing on high quan-
tiles and outliers. These plots are generated using GNU
Octave [21]. Directed graphs depicting system structure
are drawn using Graphviz [6].

4 Failure Management
We now turn to our first path-based analysis applica-

tion, failure management. Given the inevitability of fail-
ures, it is important to improve the mean time to recovery
(MTTR) as well as to increase the mean time to failure
[10, 19]. The goal of failure management is to minimize
failure impact on availability and service quality.

Although proven large-scale system design principles
such as replication and layering improve scalability and

1Boxplots illustrate a distribution’s center, spread, and asymmetries
by using rectangles to show the upper and lower quartiles and the me-
dian, and explicitly plotting each outlier [44].

2A survivor plot is 1 - CDF, the cumulative distribution function;
we plot it with a logarithmic y-axis to add detail for the tail, which is
typically the area of interest for latency measurements.

availability, the resulting componentization impedes fail-
ure management, as the execution context is distributed
throughout the system. Paths aid in failure management
by observing request-centric system behavior, identify-
ing the components involved, linking the symptoms with
the distributed state responsible, and providing an effec-
tive means of validating system assumptions made while
attempting to explain the undesirable behavior.

Paths contribute to failure management at each of the
following steps:

1. Detection: We first learn of some new, undesired
behavior (in QA, development, or production), ide-
ally from an automated analysis engine but some-
times from a human’s description.

2. Isolation: Analysis engines quickly find represen-
tative paths. These tell us which components are
involved, and their structure allows us to isolate the
problem to a small subset, often just a single com-
ponent. Such components are immediately cut off
from the remainder of the system so they can no
longer impact users.

3. Diagnosis: A human gets involved at this point,
as human response time can no longer impact ser-
vice quality. The human visualizes several repre-
sentative paths, and studies the statistically signifi-
cant deviant component interactions and behaviors.
Path-based tools are used to validate or refute hy-
potheses during the investigation. Path pointers to
application-level logs, process images, etc., lead to
root cause identification. Paths do not replace tra-
ditional local analysis tools, but rather complement
them by guiding the diagnosis.

4. Impact Analysis: In parallel with diagnosis, the path
structure that led to detection is refined so we can
use paths to determine the extent of the user impact;
i.e., the extent to which other paths exhibit the same
problem. This allows us to prioritize the ongoing
diagnosis and subsequent repair efforts.

5. Repair: We fix the problem.

6. Feedback: In parallel with repair, we use the expe-
rience as feedback to enhance future detection. If
the specific problem could have been caught more
quickly with traditional monitoring mechanisms,
we now know enough from the paths to implement
these. Or perhaps by generalizing our path detec-
tion, we could catch a broader class of problems.

We now focus our discussion on three failure manage-
ment tasks: detection, diagnosis, and impact analysis.
We single out some feedback examples as we proceed.



4.1 Failure Detection
Traditional monitoring methods use either low-level

mechanisms, such as pings and heartbeats, or high-level
application functionality tests. These low-level methods
work well for fail-stop faults, but do not detect more sub-
tle application-level failures. On the other hand, end-user
tests such as web page content validation can detect bro-
ken applications, but the validation logic must be main-
tained and versioned along with the applications. Many
services do not use these techniques because of the de-
velopment and maintenance costs involved [39]. Neither
approach works well for more subtle behaviors that af-
fect performance or a small portion of requests.

Our approach is to characterize distributions for nor-
mal paths and then look for statistically significant devi-
ations to detect failures. This can be applied to structural
changes in paths. For example, an error handler could cut
a path short, and a non-responsive or sluggish component
could stall a path. This approach can also be applied to
performance anomalies, which are visible as changes in
latency distributions.

4.1.1 Path Collisions

While servicing a user request, a system may receive a
second, new request that effectively aborts the first. For
example, users frequently interrupt HTTP requests either
by reloading the page (reissuing the request), or by click-
ing on a new link before the current request completes.
Similarly, for Tellme applications, users may abort by
hanging up, or issue new requests via touch-tone com-
mands. We wish to tie these independent but related re-
quests together to better understand their interaction.

The first path was interrupted and never completed.
Incomplete paths often indicate some of the most chal-
lenging problems, as they capture scenarios in which the
user aborts a request (or hang ups) on the system before
receiving a response. For example, stalled system com-
ponents often fail to exhibit faulty behavior directly, but
instead show up via an increase in aborted requests.

Because of their importance, we wish to retain more
context for incomplete paths. An incomplete, aborted
path references the completed path that interrupted it, so
we have a broader picture of how the user and other sys-
tem components react to the potential problem. This is
accomplished by the code that processes the abort, which
associates the corresponding paths using path identifiers,
memory pointers, etc. Then to find path collisions, we
need only look for paths that are linked in this manner.

We consider a Tellme path collision problem in Fig-
ure 3. This was caused by a race condition that resulted
in a test caller hearing complete silence, or “dead air”.
The paths for such stalled calls provide a clear diagnosis.
The last observation recorded during the incoming call
path was made just 453 ms after receiving the call. An

Figure 3: A stalled and subsequently interrupted Tellme response
path, where an engineer hangs up after hearing dead air during a test.

Fault Type Omitted
Calls

Runtime
Exceptions

Expected
Exceptions

Overall

Structural
anomalies

17% 4% 9% 10%

HTTP errors 13% 17% 22% 17%

Table 2: Miss-rate comparison of structural anomaly detection and
HTTP errors. We omit log file monitoring because of the high false
positive rate; in our experiments, some failure was always declared
whether or not we injected faults.

observation indicating that playback was about to pro-
ceed should have swiftly followed this one, but is instead
absent. This pointed the developer to the few lines of
code where the stall occurred; he then resolved the bug.

4.1.2 Structural Anomalies

We can also detect failures by searching for anomalies
in path structure. We model normal path behavior us-
ing a probabilistic context free grammar (PCFG) [34], a
structure borrowed from statistical natural language pro-
cessing. The PCFG models the likelihood of a given path
occurring based on the paths seen during training. Mag-
pie [7] also proposes using a PCFG, but has not applied
it to anomaly detection.

To generate the PCFG for normal path behaviors, we
represent each path as a tree of component function calls.
Based on the calls made by each component across all
our paths, we generate probabilistic expansion rules, rep-
resenting the probability that any given component will
call a particular set of other components. For example,
Figure 4 shows the rules trained from two short paths.

One advantage of the PCFG is that the resultant
grammar loosely bounds the acceptable set of paths
in our system. Because the grammar is context-free,
the learned PCFG actually represents a super-set of
the observed paths in the system, providing robustness
to false positives. For example, a PCFG model of a
user-customizable system, such as a personalizable web

S→ A p = 1.0 B → C p = 0.5
A→ B p = 0.5 B → $ p = 0.5
A→ BC p = 0.5 C → $ p = 1.0

Figure 4:A sample PCFG, trained on two simple paths: one where
A calls B which callsC, and another whereA calls bothB andC
directly. Sand $ are the start and end symbols, respectively.



portal, could accept many more combinations of
personalization features than it had actually observed in
its training set. This also means the PCFG might gener-
ate false negatives, allowing bad paths to slip through.
Though this false-negative effect has not been a ma-
jor factor in our experimental results, a context-sensitive
grammar would make a different tradeoff, allowing fewer
false-negatives but likely more false-positives.

Once deployed, we single out rare paths, as deter-
mined by our trained PCFG. In the results presented here,
we only consider a path’s structure to be anomalous if it
does not fit our PCFG at all.

We implemented and evaluated this algorithm in Pin-
point, testing it by injecting a series of failures into
two implementations of Sun’s sample e-commerce site
for J2EE, a clustered Petstore v1.1.2 and a rearchitected
single-node Petstore 1.3.1.

We modified the J2EE platform to allow us to inject
various failures, including expected and unexpected ex-
ceptions, as well as omitted method calls. In our exper-
iments, we injected in turn each of the three kinds of
failures into each of the 24 EJBs in the Petstores. For
each failure experiment, we stressed the system with an
application-specific workload for 5 minutes. We used
our own trace-based load generator for each site, with
a workload mix approximating that of the TPC web e-
commerce ordering benchmark, TPC-W WIPSo [50].

We first trained Pinpoint’s PCFG model with the paths
from a fault-free run of the application under a 5 minute
workload. Then, we used this model to score the paths
observed during each experiment. Table 2 summarizes
our results. We successfully detected 90% of all the fail-
ures. Overall, structural anomaly tests performed as well
as or better than simple HTTP error and log monitoring.
Also, HTTP monitoring found almost exclusively sec-
ondary faults, without noticing requests directly injected
with faults. In comparison, structural anomaly detection
correctly identified both types of faulty requests.

Although our path structure anomaly detection im-
plementation excelled in these experiments, there are a
number of realistic scenarios where it would not fare as
well. During a software upgrade, an application’s be-
havior may change significantly, and the PCFG may re-
quire explicit retraining. Also, some failures may have
a subtle impact on path structure, so that the critical de-
tails are not instrumented as observations. For example,
a data manipulation bug may not impact the associated
path structure or the latencies recorded.

4.1.3 Latency Anomalies

Paths allow us to construct performance models for
components that vary by request type, such as URLs.
Such modeling details are valuable, since many com-
ponents behave very differently when presented with

different inputs. For example, aUserProfile compo-
nent may servicegetProfile requests more quickly
thanupdateProfile requests.

Deviations in system latencies often signal problems.
An increase in latency outliers may indicate partial fail-
ures, while an increase in average latency might suggest
overload. Latency decreases may be caused by errors
preventing a request from being fully serviced.

In an empty audio clip example at Tellme, an audio
server experienced an internal fault, so that it produced
much shorter audio playbacks than the desired ones. This
failure is not catastrophic at the system level; a rare, short
audio playback typically goes unnoticed by the user. The
problem is therefore difficult to detect via low-level sys-
tem monitoring and would otherwise require significant
application knowledge to handle effectively.

Despite this challenge, we were able to query the Obs-
Logs to detect all similar occurrences once we under-
stood the path latency characteristics for this failure: ob-
servations for the beginning and end of playback spaced
too closely together in time. We correlated across mul-
tiple failure paths to deduce which components affected
which applications, so we could isolate the failing com-
ponents and assess application impact. With this new
knowledge, we crafted a monitor to use these sub-path
latency deviations to detect any future failures in both
our production and testing environments; this is an ex-
ample of the feedback aspect of failure management.

4.2 Diagnosis

Paths aid in diagnosis by identifying the components
involved and linking the symptoms with the distributed
state responsible. Although a single path may be suffi-
cient to guide developers to identify the root causes, mul-
tiple paths enable the use of statistical techniques to build
automated diagnosis tools.

We stress that this process involves system data from
when the problem is first witnessed. We treat offline fail-
ure reproduction as a backup plan for when we do not
have enough information to determine the root cause.

4.2.1 Single-path Diagnosis

A single path, when sufficiently instrumented with de-
tails such as function arguments and database queries, is
sufficient for debugging many software problems. The
control flow embodied by paths guides the use of lo-
cal analysis tools, such as application-level logs, to dis-
cover and associate component details with a particular
request. Without paths, the individual component logs
are less useful for lack of an association between log en-
tries and other system state for common requests. Corre-
lating traditional debug logs for a large number of differ-
ent components is painful and prone to error.

A path’s latency profile may help isolate problematic



components so that individual component logs yield a
diagnosis. In the empty audio clip case at Tellme (see
Section 4.1.1), an engineer familiar with a particular ap-
plication noticed a short audio playback and provided the
timestamp and caller ID of a phone call that enabled us
to quickly locate the relevant path. Once we had visu-
alized the latency profile, a short 20 ms playback time
suggested an empty audio clip. The preceding observa-
tions confirmed that a remote audio server thought it had
successfully serviced the audio request, when in fact a
rare error had occurred. We identified the particular re-
mote process from the path information, and text logs on
that machine subsequently revealed the root cause.

4.2.2 Multi-path Diagnosis

Statistical techniques help rapidly narrow down poten-
tial causes of failure by correlating data across multiple
paths [13]. This works with black-box components, and
can be done automatically and independently of system
upgrades. The heavy traffic presented to a large, live sys-
tem exposes rare behavior and strengthens all our sta-
tistical tools by narrowing confidence intervals. In many
systems, it is cost-prohibitive to reproduce such large, re-
alistic input loads offline. For the rest, these techniques
prove equally powerful offline.

To isolate faults to the components responsible, we
search for correlations between component use and
failed requests. Such components frequently cause the
failures, or at least provide more insight into the chain
of events leading to the failures. This can be cast as a
feature selection problem in the statistical learning do-
main, where the features are the components and re-
sources used by each request.

We have explored both a statistical machine learning
approach and a data mining approach. The former in-
volves training a decision tree [9] to differentiate be-
tween classes of success and failure, where the tree edges
leading to failures become root cause candidates. The
latter approach, called association rules [2], uses brute
force to formulate all feature combinations (the rules)
that are observed to co-occur with failures, and then
ranks these by the conditional probability of failure.

We used two heuristics in implementing these algo-
rithms. The first is noise filtering. Because large sys-
tems rarely operate with perfect consistency, they usually
exhibit minor but acceptable abnormal behavior. When
diagnosing failures, we are interested in identifying the
root causes that result in a large portion of overall abnor-
mal behavior. Therefore, we discard those root causes
that fail to explain a sizable portion. The second heuris-
tic trims the set of identified causes by eliminating re-
dundant features that correlate perfectly with each other.

To evaluate these approaches, we collected 10 failure
traces from eBay’s production site. Four traces had two

independent failures each for a total of 14 root causes,
consisting of machine, software, and database faults.
Each trace had roughly 50 features that tracked 260 ma-
chines, 300 request types, 7 software versions, and 40
databases. Both techniques correctly identified 93% of
the root causes. The decision tree produced 23% false
positives, compared with 50% for the association rules.

We have deployed an online diagnosis tool based on
a greedy variant of the decision tree approach to eBay’s
production site. Instead of building a full decision tree,
the algorithm locates the single fault that results in the
largest number of failures. The tool analyzes 200K paths
in less than 3 seconds, and sends diagnosis results via
real-time Tivoli alerts to the operations team.

4.3 Impact Analysis
Failure impact on a system’s users is a key component

of many service quality metrics. For billing purposes, it
is important to measure such impact accurately. It is also
important to measure itquickly, so that problem solving
resources may be correctly prioritized.

We measure the proportion of requests that are suc-
cessfully serviced, as defined in a Service Level Agree-
ment (SLA). A thorough SLA takes high-level, end-user
factors into consideration, such as the quality of various
responses or of the entire session. These are richer ser-
vice metrics than availability.

Paths provide a means to accurately and rapidly com-
pute such metrics. This is similar to the detection prob-
lem, but different in that we are not satisfied with just
knowing whether a problem is happening, but rather
want to identifyeveryrequest impacted by the root cause,
regardless of the different possible manifestations.

Using the details in the path collision example, we
were able to perform an accurate impact analysis for a
stress test, where we predict how often such race con-
ditions would occur and be user-visible in a production
environment. This ispredictiveimpact analysis, because
we are using results in an offline test environment to pre-
dict potential outcomes in a production environment. We
can also performretroactive impact analysis, where as
part of a failure postmortem, paths help us answer a dif-
ferent set of questions, including how particular applica-
tions are impacted and to what degree.

For example, we queried for incoming call paths that
stalled at the last recorded observation in Figure 3 for
at least 100 ms before being interrupted by a call dis-
connect. All phone calls experiencing this problem stall
at the same place, where the only input the user can
provide is to hang up the phone. Therefore, our query
would not miss any callers that experience the problem’s
symptoms. Our experience with the working, produc-
tion version of this system indicates that this last obser-
vation is always followed by another within 10 ms, even



Figure 5:A portion of the derived application structure for RUBiS (a
J2EE benchmark [11]) showing a subset of its 33 components, includ-
ing JSPs, Servlets, EJBs, and database tables (in gray). The nodes are
requests, components, and database tables. The directed edges repre-
sent observed paths.

when presented with a simulated input load (call traffic)
that stresses the system past its normal operating point.
Given the large amount of traffic and long time frames
over which the correct behavior was observed, we can
empirically bound the probability of a false alarm to less
than 1 × 10−6. Now, after little work, we had an ac-
curate understanding of how this problem would impact
live users, and could appropriately prioritize fixing it.

Note that this information also allows us to craft a tar-
geted monitor for future occurrences of this problem, an
example of failure management feedback. We can also
generalize our queries to capture a larger class of prob-
lems by focusing on the user behavior. For example, we
can search for callers who hang up on an incomplete path
after a long period of inactivity.

5 Evolution
Systems change over time, as software updates fix

bugs and introduce new bugs and features, and hardware
additions increase capacity as well as improve perfor-
mance. Paths address system evolution in two ways:

• Paths capture system structureand component
dependencies, and can be used to observe systems
withouta priori knowledge of their inner workings.

• When applied to testing during a system release pro-
cess, paths enable developers and Quality Assur-
ance (QA) engineers to quickly and accuratelyvali-
date new behaviorandidentify subtle regressions
across system versions. This can be done efficiently,
so that a single test run may simultaneously detect
and diagnose multiple regressions.

5.1 Deducing Application Structure
Modern applications tend to have intricate, dynamic

structures containing components with complex depen-
dencies. An accurate view of such structure increases
code accessibility, enables more efficient development,
aids in system testing, and increases the visibility of con-
figuration failures.

Database Tables

Request Type ProductSignonAccountBannerInventory

verifysignin R R R

cart R R R/W

commitorder R W

search R R

productdetails R R/W

checkout W

Table 3: An automatically generated partial state dependency
table for Pet Store. To determine which request types share state,
group the rows by common entry under the desired column. For
example, thecheckout request only writes to the Inventory table,
which is shared with three other requests:cart , commitorder , and
productdetails .

Current techniques for understanding application
structure rely on static analysis or human diligence to
document and track application changes, sometimes with
the aid of a modeling language, such as UML. Manually
tracking changes is time consuming, prone to error, and
difficult to enforce consistently. Paths can be used to dis-
cover this structure and provide more accurate details.
With instrumented application servers, it is possible to
deduce application structure without any knowledge of
the application.

Note a key distinction between our approach and static
analysis: paths captureactual, observed component de-
pendencies, including runtime resources, instead ofpo-
tential component dependencies. Figure 5 shows an ex-
ample of an automatically derived application structure.
We ran an unmodified J2EE benchmark, RUBiS[11],
hosted on Pinpoint, and generated workload using the
client emulator from the RUBiS package. The ob-
served paths are aggregated to show the dependency
between the various application components, including
Java Server Pages, Servlets, Enterprise Java Beans, and
database tables.

Paths can also be used to derive more complex appli-
cation structure. For example, a database table contain-
ing end-user information is typically read and modified
by several components, including those for register, lo-
gin, and update operations. A bug in one of these opera-
tions may cause the others to fail. Table 3 is an automat-
ically derived state-dependency table for an unmodified
Pet Store application, showing the actual database tables
read and written by various requests. Such knowledge
is useful when diagnosing state-dependent bugs or data
corruption, and understanding inter-path dependencies.

5.2 Versioning

Identifying differences in system performance and be-
havior is an important part of upgrading applications and
the platform they run on. During QA testing at Tellme,
we use a telephone call simulator to stress systems in a



Figure 6:A trend specific to recognition time in Tellme application A
suggests a regression in a speech grammar in that application.3 Recall
that the Tukey boxplots shown illustrate a distribution’s center, spread,
and asymmetries by using rectangles to show the upper and lower quar-
tiles and the median, and explicitly plotting each outlier [44].

carefully controlled test environment. We analyze the
resulting paths and compare them with similar data for
previous platform and application versions, in order to
identify regressions as well as validate performance im-
provements. We run 10-15 performance tests per re-
lease, each of which involves hundreds of distinct sub-
path comparisons. Although we focus on latency data
here, it is straightforward to apply these techniques to
other resource usage and performance metrics.

The path-based approach is particularly appealing to
a QA team, as many meaningful comparisons may be
derived from the embedded sub-paths. This allows a QA
engineer to approach the analysis task with a different
perspective than the developer, and as a result, QA often
identifies interesting, unanticipated path structures.

For simplicity, we consider a sample of three such
tests, using three different interval types from six differ-
ent applications.Search timeis a user-perceived latency,
defined as the time from when a user stops speaking to
when he hears audio in response. This consists of sev-
eral disjoint subintervals.Recognition timecovers up to
speech recognition completion, at which point the plat-
form conjectures what was said.VXML interpretation
follows, and represents the time spent evaluating the ap-
plication content in response to the user’s input. The fi-
nal portion of search time is spent preparing the desired
prompt for playback.

In our first test, shown in Figure 6, we see that recog-
nition time in application A changed drastically in ver-
sion 2. However, recognition time in all other applica-
tions for this test remained steady (as exemplified by the
plot for application B in the middle), and other intervals
in application A, such as VXML interpretation time, did
not change either (shown on the right). This narrows the
problem down considerably.

An application history check revealed a feature

Figure 7:Consistent trends in Tellme recognition time profiles across
applications suggest systemic changes.

Figure 8:The regression in Tellme application F is difficult to discern
in the boxplot, but is easily visible in the logarithmic survivor plot. It
is also detectable quantitatively using a statistical two-sample test, and
diagnosed with sub-path information.

addition in version 2, that wound up consuming more
resources than desired. A more efficient alternative was
subsequently implemented in version 3.3

A variety of other regressions can be identified in simi-
lar ways. Recognition times for 3 applications are shown
in Figure 7. What is normally an extremely quick re-
sponse takes a significant amount of time in version 2.
Furthermore, this behavior was evident inall recognition
times for this particular stress test, forall applications.
These facts point to a systemic problem with the recogni-
tion subsystem, and indeed, this test was conducted with
different recognition hardware. The latencies are all re-
duced in version 3, running on the usual hardware.

Our last application reveals a more subtle regression
in Figure 8. The version 2 distribution appears slightly
extended, although it is not visually apparent from the
boxplot how statistically significant this difference is.
We use standard two-sample tests [44] to quantify such

3Notice two other changes in the version 3 boxplots in Figures 6
and 7. First, all recognitions take slightly longer, because we upgraded
the acoustic models used. Second, measurement timing resolution has
improved from 10 ms, due to an operating system change.



differences.4 In fact, Tellme conducts such tests on all its
data to automate the analysis process, so a human is only
required when a significant behavior change is detected.
The p-value for the Mann-Whitney test for versions 1 and
2 is1.5× 10−4, so we have high confidence that median
search time increased in version 2.5 However, taking a
different look at this data provides more insight.

At the right of Figure 8, we focus our attention on the
search time outliers by using sample survivor functions
on a logarithmic scale. The aberrant version 2 behavior
is now clear: all quantiles above 80% have increased.

The culprit became evident after using the path infor-
mation to identify the responsible subinterval: applica-
tion F’s data feed changed in version 2, and we were wit-
nessing erratic web server performance.

In summary, paths offer powerful tools for evolving
systems. Automatically deriving system structure and
dependencies helps development, QA, and operations
teams better understand the system. We can also auto-
matically detect statistically significant changes in per-
formance and perceived latency across versions. Some
differences are only visible in distribution outliers, and
not in the mean, but they are still captured by this ap-
proach. We may further employ paths to understand the
cause behind each change, per Section 4.2.

6 Discussion
In this section, we summarize some important lessons

that we have learned while working with paths.

6.1 Maintainability and Extensibility
For Tracers to be practical, the instrumentation must

be: 1) maintainable, so that it is not likely to break in
light of ongoing platform changes, and 2) extensible, so
new platform additions can easily make use of the mea-
surement infrastructure. Path-based instrumentation suc-
ceeds in this regard because it keeps the reporting and
analysis logic external to the instrumented system.

Consider the common problem of instrumenting soft-
ware to measure the latency of a certain interval, that be-
gins in one software module and ends in another. These
modules know little of each other’s internals.

The naivepoint-basedapproach would have the two
modules log the start and end events respectively, and
attemptto pair them up externally. Without a path to link
these two endpoints to the same request, it is easy to get
confused about the pairings. Although it is possible to
statistically infer the common pairings [3], we are often
interested in precise matches.

4We prefer tests that avoid assumptions about the distributions (non-
parametric tests). Here we use the Mann-Whitney test to determine if
two datasets come from the same distribution. For testing changes in
quantiles, we prefer Woodruff confidence intervals [20].

5We say differences are statistically significant only for low p-
values (< 0.001), as we have a great deal of data at our disposal.

We could internalize (but not eliminate) the pairing
task by explicitly tracking and propagating timestamps
inside the system. Thisinterval-basedapproach offers
limited flexibility for adding and modifying measure-
ments, and adds intricate, and often overlooked, depen-
dencies between modules.

Thepath-basedapproach provides the flexibility with-
out the dependencies. The modules simply report ob-
servations with timestamps, and paths ensure a correct
pairing of these two events. In addition, measurements
of new internals (sub-paths) can be easily added without
new instrumentation.

At Tellme, we have repeatedly watched measurements
made using older approaches break, while path-based
measurements have remained robust in the face of rapid
change. With path-based measurement, developers esti-
mate that they now spend 23-28 fewer person-hours per
new, medium-sized software component validating cor-
rectness and overall performance impact.

6.2 Trapping Failures

Given the difficulty of perfectly simulating real work-
loads during testing, our philosophy is to accept the fact
that failures will happen, but to be well prepared to re-
cover quickly [14]. The sheer size and large request rate
of a full production system expose rare behavior more
frequently than offline tests. We sometimes cannot af-
ford to wait for the problem to recur, and attempts to re-
produce subtle timing conditions on a smaller test system
can be difficult.

Paths allow us to isolate a problem the first time it hap-
pens, and if we cannot immediately diagnose the prob-
lem, we can identify the areas where we need to enable
additional instrumentation to catch the problem the next
time. Tellme has used thisfailure trappingapproach to
successfully diagnose rare and obscure bugs. We use the
dynamic filter described in Section 3.2 to enable the ag-
gregation of verbose observations and trap problems in
this manner.

This is one application area where paths aid in data
mutation detection. If content is a key part of the critical
path of a system, such as audio in Tellme’s network, it
is advantageous to record data signatures (e.g., hashes)
as observations at various points along a path, so that the
content’s integrity can be validated throughout. If it is
not obviousa priori what data to validate, or validation
generates too much data to handle during normal opera-
tion, then data validation is best enabled when attempting
to trap an existing, known failure.

6.3 Designing for Path-Based Macro Analysis

Our black-box path observation approach provides
visibility into application behavior and structure with-
out requiring any application changes. Pinpoint has four



applications and Tellme runs hundreds of voice applica-
tions that are all observed and analyzed with zero atten-
tion required of the application developers.

Large-scale system design is moving toward the ap-
plication server model [8, 35, 45], where the platform
acts as a cluster-based operating system that provides re-
source management, scheduling, and other services for
applications. We believe that the path abstraction should
be a core design principle inherent in these systems.

We offer several design guidelines for building path-
based analysis support into a system. The first is to track
path request state, including unique path IDs, as close to
the control flow in the code as possible. Develop inter-
faces, classes, and messaging protocols with this in mind,
rather than addressing versioning issues later.

The second guideline is to use a high-throughput log-
ging mechanism and a space-efficient data representa-
tion, so that the system’s critical path is minimally im-
pacted. Although text logs are easier to parse and under-
stand, we have found that compressed binary representa-
tions significantly reduce logging overhead.

The third is to design the query interface not only with
the expected formal use in mind, but to also plan for
exploratory data analysis. Engineers tend to form new
questions when working with path data, and the interface
must be general enough to support such experimentation.

The fourth guideline is to design efficient, flexible
query and aggregation sub-systems. Centralized ver-
sus distributed storage and processing tradeoffs must be
weighed based on expected use – a distributed design
leverages parallel I/O and processing, but adds complex-
ity and runtime overhead to each node in the system. We
stress thatdata is cheapin large systems. A lot of data
goes a long way with simple, inexpensive statistical tests.
These simple tests also tend to scale better.

6.4 Distributed Timestamps

Latency distribution analysis is challenging when a
path runs through machines with different clocks and
the intervals of interest are short. We recommend us-
ing local timestamps (e.g., Solarisgethrtime ) when
possible to avoid clock drift concerns, and to use sys-
tem timestamps (e.g.,gettimeofday ) with a time-
synchronization protocol such as NTP [37] to compute
intervals between hosts on different clocks. ObsLogs
contain a system timestamp per path per machine, and
all observations are made with 32-bit local timestamps.
So far the extra noise of inter-machine intervals has not
been a limitation in practice, although there are improved
time synchronization algorithms that we could deploy to
reduce the noise [16].

6.5 Path Limitations
The path-based approach has proven useful in many

applications. However, the path concept itself does not
solve problems. Rather, paths provide a framework
by which existing techniques may be better focused to
tackle common challenges encountered while managing
large, distributed systems.

We must decide which observations to include in paths
for the system of interest. Software bugs may be so fo-
cused that they slip between two observations, so that
their impact is not noticed but for the coarse path detail.
Deciding what to instrument is an iterative process that
evolves with the system. We prefer to err on the side of
excess, and dynamically filter out noisy observations that
are not as frequently useful.

For example, our current Pinpoint Tracer implementa-
tions generate observations at the application level but
do not yet account for lower-level components, such
as transparent web caches and RAID disks. Extending
Tracers to include such information can help us detect
and diagnose low-level configuration errors and failures
(e.g., buggy RAID controllers).

7 Related Work
In this section we discuss previous work in path-based

profiling, paths, diagnosis, and anomaly detection.

7.1 Path-based Profiling
There are many profiling tools that provide more com-

plete solutions for specialized tasks, such as performance
modeling. None of these systems are applicable to the
failure management tasks discussed in this paper except
for performance failures.

Similar to our approach, several systems use explicit
identifiers to trace requests through multi-tier systems for
performance profiling. Some also implement the trac-
ing in the platform so that no application modification
is required. Magpie [7] profiles distributed systems to
observe processing state machines (e.g., for HTTP re-
quests) and to measure request resource consumption
(CPU, disk, and network usage) at each stage. Mag-
pie then builds stochastic workload models suitable for
performance prediction, tuning, and diagnosis. WebMon
[49] uses HTTP cookies as identifiers to trace requests
from web browsers to the web servers and application
servers. There are also several recent commercial re-
quest tracing systems focusing on performance profiling
and diagnosis, such as PerformaSure [46] and AppAs-
sure [4]. ETE [24] is a customizable event collection sys-
tem for transactions. It requires manually written trans-
action definitions to associate events with a transaction,
whereas paths captures the association automatically.

Aguilera et al. [3] takes a completely non-invasive
approach to profiling distributed systems. They infer



the dominant causal paths through a distributed system
of black boxes using message-level traces, without any
knowledge of node internals or message semantics. They
have used the causal paths to profile and diagnose per-
formance problems. Although their approach is less in-
vasive than ours, it is more difficult to associate specific
observations with specific request paths for failure man-
agement tasks.

7.2 Paths in Other Contexts
Whole Program Paths [31] shares our view of captur-

ing program dynamic control flow, and applies this to
detect hot sub-paths in individual processes for perfor-
mance tuning. Scout [38], Ninja [45], SEDA [54], and
Virtual Services [43] use paths to specify control flow
and resource allocation while servicing requests. These
systems would be particularly easy to integrate with our
macro analysis infrastructure.

Clickstream analysis uses paths to represent the se-
quence of web pages a user visits. They focus on under-
standing user behavior to improve usability, characterize
visitors, and predict future access patterns [29].

7.3 Diagnosis
IntegriTea [48] and AppSight [28] trace requests to

record method calls and parameters to capture and re-
play single-path failures. These systems do not correlate
across multiple requests for improved diagnosis. Some
distributed debuggers support stepping through remote
calls [33]. These tools typically work with homogeneous
components and aid in low-level debugging.

Event and alarm correlation techniques have been used
for many years in network management applications
[56]. The challenge is to infer event causality from just
the event sources and timestamps.

7.4 Anomaly Detection
Anomaly detection techniques have been used to iden-

tify software bugs [17, 51] and detect intrusions [32]
from resource usage [15], system calls [27], and network
packets [41]. Performance failure detection tools [25, 52]
compensate for workload variations using trend analysis.
The workload models are constructed per site or per re-
quest type. Paths enable fine-grain workload models to
be constructed per component and per request type.

8 Conclusion
We have presented a new approach to managing fail-

ures and evolution using paths. We trace request paths
through distributed system components, aggregate the
resulting data, and apply statistical techniques to infer
high-level system properties.

This approach allows us to build tools that apply to
many applications, even including legacy applications

that run on application servers. These tools can perform
complex detection and diagnosis operations without de-
tailed knowledge of the applications or the system com-
ponents. The key to this ability is a large amount of traf-
fic (many paths), which enables meaningful automated
statistical analysis.

We have applied our methodology to address four key
challenges that arise when managing large, distributed
systems.

1. Path anomalies and latency profiles can be used
to quickly and accurately detect system failures,
including both correctness and performance prob-
lems. Because of automated statistical methods, we
can run fault detectors for many different kinds of
failures simultaneously.

2. Paths help isolate faults and diagnose failures, ei-
ther for defects in a single path or sets of paths that
exhibit some property.

3. Paths allow us to estimate the impact of a fault by
finding the set of other paths that exhibit similar be-
havior, which allows for prioritization of problems
and resolution of SLA deviations.

4. Paths contribute to correct system evolution by dis-
covering system structure and detecting subtle be-
havioral differences across system versions. As
with detection, automated tools allows us to track
thousands of system metrics simultaneously, look-
ing for statistically significant deviations from the
old version.

We have validated our methodology using three im-
plementations: a research prototype and two large, com-
mercial systems that service millions of requests per day.

We are currently exploring a variety of data storage
and analysis engine architectures in order to build a path-
based infrastructure whose use can scale far past the sys-
tems it supports. We also continue to experiment with
new algorithms for our analysis engines. We are explor-
ing the application of our failure detection techniques
to clickstream paths. Finally, we plan to extend paths
to peer-to-peer systems, where we can use path proper-
ties to verify distributed macro invariants so as to detect
faulty implementations or misbehaving members.

References
[1] ABBOTT, M. B., AND PETERSON, L. L. Increasing Network

Throughput by Integrating Protocol Layers.IEEE/ACM Transac-
tions on Networking 1, 5 (1993), 600–610.

[2] AGRAWAL , R., IMIELINSKI , T., AND SWAMI , A. Mining as-
sociation rules between sets of items in large databases. InSIG-
MOD (1993), pp. 26–28.

[3] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L.,
REYNOLDS, P., AND MUTHITACHAROEN, A. Performance
Debugging for Distributed Systems of Black Boxes. InSOSP
(2003).



[4] ALIGNMENT SOFTWARE. AppAssure, 2002.http://www.
alignmentsoftware.com .

[5] AMMONS, G.,AND LARUS, J. R. Improving Data-flow Analysis
with Path Profiles. InConference on Programming Language
Design and Implementation(1998), pp. 72–84.

[6] AT&T L ABS. Graphviz, 1996. http://www.research.
att.com/sw/tools/graphviz .

[7] BARHAM , P., ISAACS, R., MORTIER, R., AND NARAYANAN ,
D. Magpie: Real-time Modelling and Performance-aware
Ssytems. InHotOS IX(May 2003).

[8] BEA SYSTEMS. WebLogic.http://www.bea.com .
[9] BREIMAN , L., H.FRIEDMAN , J., OLSHEN, R. A., AND STONE,

C. J. Classification and Regression Trees. Wadsworth, 1984.
[10] BREWER, E. Lessons from Giant-Scale Services.IEEE Internet

Computing 5, 4 (July 2001), 46–55.
[11] C. AMZA ET AL . Specification and Implementation of Dynamic

Web Site Benchmarks. InIEEE 5th Annual Workshop on Work-
load Characterization(Nov 2002).

[12] CHEN, M., K ICIMAN , E., ACCARDI, A., FOX, A., AND

BREWER, E. Using Runtime Paths for Macroanalysis. InHo-
tOS IV (2003).

[13] CHEN, M., K ICIMAN , E., FRATKIN , E., BREWER, E., AND

FOX, A. Pinpoint: Problem Determination in Large, Dynamic
Internet Services. InSymposium on Dependable Networks and
Systems (IPDS Track)(2002).

[14] D. PATTERSON ET AL. Recovery Oriented Computing (ROC):
Motivation, Definition, Techniques, and Case Studies. Tech. Rep.
CSD-02-1175, UC Berkeley Computer Science, 2002.

[15] DUNLAP, G. W., KING, S. T., CINAR , S., BASRAI, M., AND

CHEN, P. M. ReVirt: Enabling Intrusion Analysis through
Virtual-Machine Logging and Replay. InOSDI (2002).

[16] ELSON, J., GIROD, L., AND ESTRIN, D. Fine-Grained Network
Time Synchronization Using Reference Broadcasts. InOSDI
(2002).

[17] ENGLER, D., CHELF, B., CHOU, A., AND HALLEM , S. Check-
ing System Rules Using System-Specific, Programmer-Written
Compiler Extensions. InOSDI (2000).

[18] FOX, A., GRIBBLE, S. D., CHAWATHE , Y., BREWER, E. A.,
AND GAUTHIER, P. Cluster-Based Scalable Network Services.
In SOSP(1997), pp. 78–91.

[19] FOX, A., AND PATTERSON, D. When Does Fast Recovery
Trump High Reliability? InWorkshop on Evaluating and Ar-
chitecting System dependabilitY (EASY)(October 2002).

[20] FRANCISCO, C. A., AND FULLER, W. A. Quantile Estimation
with a Complex Survey Design.The Annals of Statistics 19, 1
(1991), 454–469.

[21] GNU. Octave, 1992.http://www.octave.org .
[22] GRAHAM , S., KESSLER, P., AND MCKUSICK, M. gprof: A

Call Graph Execution Profiler. InSymposium on Compiler Con-
struction(June 1982), vol. 17, pp. 120–126.

[23] GRAY, J. Dependability in the Internet Era. http:
//research.microsoft.com/~gray/talks/
InternetAvailability.ppt .

[24] HELLERSTEIN, J. L., MACCABEE, M., M ILLS , W. N., AND

TUREK, J. J. ETE: A Customizable Approach to Measuring End-
to-End Response Times and Their Components in Distributed
Systems. InInternational Conference on Distributed Computing
Systems(1999).

[25] HELLERSTEIN, J. L., ZHANG, F., AND SHAHABUDDIN , P. An
Approach to Predictive Detection for Service Management. In
Symposium on Integrated Network Management(1999).

[26] HENNESSY, J. L., AND PATTERSON, D. A. Computer Archi-
tecture: A Quantitative Approach, third ed. Morgan Kaufmann,
2002. Chapter 8.12.

[27] HOFMEYR, S. A., FORREST, S., AND SOMAYAJI , A. Intrusion
Detection Using Sequences of System Calls.Journal of Com-
puter Security 6, 3 (1998), 151–180.

[28] IDENTIFY SOFTWARE. AppSight, 2001. http://www.

identify.com .
[29] J. SRIVASTAVA ET AL . Web Usage Mining: Discovery and Ap-

plications of Usage Patterns from Web Data.SIGKDD Explo-
rations 1, 2 (2000), 12–23.

[30] JBOSS.ORG. J2EE App Server.http://www.jboss.org .
[31] LARUS, J. R. Whole Program Paths. InConference on Program-

ming Languages Design and Implementation(May 1999).
[32] LEE, W., AND STOLFO, S. Data Mining Approaches for Intru-

sion Detection. InUSENIX Security Symposium(1998).
[33] M. M EIER ET AL. Experiences with Building Distributed Debug-

gers. InSIGMETRICS Symposium on Parallel and Distributed
Tools(1996).

[34] MANNING , C. D., AND SHUTZE, H. Foundations of Statistical
Natural Language Processing. The MIT Press, 2000.

[35] M ICROSOFT. .NET. http://microsoft.com/net .
[36] M ICROSOFT RESEARCH. Magpie project, 2003. http://

research.microsoft.com/projects/magpie .
[37] M ILLS , D. L. RFC 1305: Network time protocol (version 3)

specification, implementation, Mar. 1992.
[38] MOSBERGER, D., AND PETERSON, L. L. Making Paths Explicit

in the Scout Operating System. InOSDI (1996).
[39] OPPENHEIMER, D., GANAPATHI , A., AND PATTERSON, D. A.

Why do Internet services fail, and what can be done about it? In
USITS(March 2003).

[40] ORACLE. Oracle Data Mining, 2002.http://technet.
oracle.com/products/bi/9idmining.html .

[41] PAXSON, V. Bro: A System for Detecting Network Intruders in
Real-time.Computer Networks 31, 23–24 (1999), 2435–2463.

[42] RATIONAL SOFTWARE. Quantify for UNIX. http://www.
rational.com/products/quantify_unix .

[43] REUMANN , J., MEHRA, A., SHIN , K. G., AND KANDLUR , D.
Virtual Services: A New Abstraction for Server Consolidation. In
USENIX Annual Technical Conference(June 2000), pp. 117–130.

[44] RICE, J. A. Mathematical Statistics and Data Analysis, sec-
ond ed. Duxbury Press, 1994.

[45] S. D. GRIBBLE ET AL . The Ninja Architecture for Robust
Internet-scale Systems and Services.Computer Networks 35, 4
(2001), 473–497.

[46] SITRAKA . PerformaSure, 2002.http://www.sitraka.
com/software/performasure .

[47] SUN M ICROSYSTEMS. Java2 Enterprise Edition (J2EE).http:
//www.javasoft.com/j2ee .

[48] TEALEAF TECHNOLOGY. IntegriTea, 2002.http://www.
tealeaf.com .

[49] THOMAS GSCHWIND ET AL. WebMon: A Performance Pro-
filer for Web Transactions. In4th IEEE Int’l Workshop on Ad-
vanced Issues of E-Commerce and Web-Based Information Sys-
tems(2002).

[50] TRANSACTION PROCESSINGPERFORMANCECOUNCIL. TPC-
W Benchmark Specification, Web-based Ordering.http://
www.tpc.org/wspec.html .

[51] WAGNER, D., AND DEAN, D. Intrusion Detection via Static
Analysis. InIEEE Symposium on Security and Privacy(2001),
pp. 156–169.

[52] WARD, A., GLYNN , P., AND RICHARDSON, K. Internet Ser-
vice Performance Failure Detection. InWeb Server Performance
Workshop(1998).

[53] WEISER, M. Program Slicing.IEEE Transactions on Software
Engineering SE-10, 4 (1984), 352–357.

[54] WELSH, M., CULLER, D. E., AND BREWER, E. A. SEDA: An
Architecture for Well-Conditioned, Scalable Internet Services. In
SOSP(2001), pp. 230–243.

[55] WORLD WIDE WEB CONSORTIUM (W3C). Voice Extensible
Markup Language (VoiceXML) Version 2.0.http://www.
w3.org/TR/voicexml20 .

[56] YEMINI , A., AND KLIGER, S. High Speed and Robust Event
Correlation. IEEE Communication Magazine 34, 5 (May 1996),
82–90.


