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Abstract
Recent research activity [2, 12, 27, 10, 1] has shown en-
couraging results for performance debugging and failure
diagnosis and detection in systems by using approaches
based on automatically inducing models and deriving
correlations from observed data. We believe that max-
imizing the potential of this line of research will require
surmounting some fundamental challenges arising not
from the modeling techniques themselves, but specifi-
cally from theapplication of those techniques to real-
world systems. We specifically formulate three chal-
lenges. First, as new data is collected from a system,
previously-induced models must be continuously as-
sessed and validated, with the ultimate aim of achieving
online adaption to system changes. Second, human oper-
ators must be able to effectively interact with the models,
including interpreting model findings to generate expla-
nations, enabling human feedback to improve the mod-
els, and identifying false positives and missed detections.
Third, it should be possible to formally manipulate “sig-
natures” of system state as represented by these models,
allowing us to query the system’s past to identify recur-
ring problems and manually annotate them with addi-
tional information. We contend that the specifics of this
problem domain not only raise these challenges, but also
provide the knowledge base from which to derive well-
engineered solutions to them. We suggest some possible
strategies for addressing each challenge and show how
they arise in the context of a real example.

1 Introduction

The complexity of today’s deployed software systems is
staggering, as is the rate of growth of that complexity.
In terms of lines of code, in the last ten years Linux has
grown by a factor of 30 and Cisco IOS by a factor of 10
while Apache has grown by a factor of five in the last
five years. The result is that more than 90% of a typi-
cal corporate IT budget is devoted to administration and

maintenance of existing systems [11] whose complexity
surpasses human operators’ ability to diagnose and re-
spond to problems rapidly and correctly [17, 26].

Fortunately, promising initial results have been re-
ported in using automatically-induced probabilistic and
machine-learning-based models for problem localiza-
tion [10], performance debugging [2, 1], capacity plan-
ning, system tuning [38], detecting non-failstop fail-
ures [27], and attributing performance problems to spe-
cific low-level metrics [12], among others. These ef-
forts differ in the specific techniques, models, and as-
sumptions (we list some representative examples later),
but the general approach may be summarized as follows:
Collect raw data from the running system; automatically
induce a model over this data; use the model to make in-
ferences. We believe this general direction is extremely
encouraging because the automatic construction of mod-
els from data brings the promise of rapid adaptation to
system changes or to unanticipated conditions. Despite
the differences among approaches, we expect that there
will arise fundamental challenges thatany effort utiliz-
ing statistical methods will have to confront. Given the
successes so far, we detail in this paper three such chal-
lenges in hopes of guiding this line of research towards
realizing its full potential.

Our challenges may be summarized as: Can we design
effective procedures and algorithms that continuously
and automatically test the validity of models against a
dynamic environment? How can model findings be inter-
preted by the human operators of the system, e.g. iden-
tifying false positives, converting model findings to ac-
tionable information, and possibly accepting feedback
from experts? How can we maintain a long term, index-
able, and searchable history of system issues, annotated
in some cases with diagnosis/repair action, to leverage
past diagnosis efforts and enable use of similarity-based
search techniques in order to identify recurring problems
and group similar problem incidents into common “syn-
dromes”?



To understand how these challenges arose, it is use-
ful to review some concrete approaches, including their
assumptions and methods (Section 2); we then explore
each challenge in detail (Sections 3–5) and give an ex-
ample of how the challenges is addressed in the context
of a specific approach. We make concluding remarks in
Section 6.

2 Early explorations

We highlight some recent specific successes of recent
approaches that automatically induce models and corre-
late data from a running networked system. These ap-
proaches concentrate on transforming data into informa-
tion that can be used to make decisions. Our intent is not
to present a complete survey, but to outline the ways in
which the different approaches map to real systems prob-
lems, the assumptions underlying this mapping, the con-
sequences of violating those assumptions, and the simi-
larities among the approaches that will motivate our fun-
damental challenges.

One set of approaches relies on modelingnormalbe-
havior and then identifying sufficiently largedeviations
as a possible indication of undesirable behavior. For ex-
ample, the technique in [27] identifies rarely-occurring
paths at runtime by using probabilistic grammars to
model the distribution ofnormal paths of program ex-
ecution at the software-module level. The assumption is
that a sufficientlyanomalouspath may indicate a possi-
ble failure. When this assumption is violated, e.g. be-
cause a rare but legitimate code path is traversed, an
automatic repair system might mistakenly take a repair
action. The work discusses options for low-cost repair
techniques that cause no harm if invoked by mistake,
to mitigate such inevitable “false positives.” In con-
trolled experiments with realistic workloads, this tech-
nique detected 15% more failures than existing generic
techniques; localization of these faults exhibits a clas-
sic recall/precision tradeoff, with false positive rates
(1− precision) approaching 20% for high values of re-
call, emphasizing the importance of dealing with false
positives.

A second approach [12, 41] explicitly defines abnor-
mal vs. normal behavior in terms of a directly mea-
surable high-level objective, such as a threshold on re-
sponse time or throughput and uses Bayesian network
based classifiers [19] to capture the relationship between
these objectives and low-level system metrics. When the
high-level objectives are violated, the models determine
which low-level metrics are correlated with the violation
and which are not; this information can be used to iden-
tify likely causes of the performance problem. The as-
sumption is that the Bayesian network classifiers do a
good job of capturing patterns of low-level metrics that

correlate well with violations of objectives; the approach
provides a way ofscoring its models so it can be deter-
mined when this assumption does not hold. Experiments
with this approach, both on an experimental testbed and
using data from a geographically distributed Enterprise
production environment, showed that using a handful of
inter-correlated metrics (between 3-8) is often enough to
capture between 90-95% of the patterns of normal and
abnormal behavior, and generally pointed towards a cor-
rect diagnosis/repair action of a performance problem.

A third approach, exemplified by [1], proposes algo-
rithms to reconstruct thecausalpaths followed by trans-
actions through the system, and then identifies path sites
corresponding to high time consumption (i.e. possible
performance bottlenecks). The assumption is that these
causal paths can be reconstructed (in a statistical sense)
using time precedence and regularities in the times be-
tween the different subtransactions. Note that in this
case, there is no consideration of normal or abnormal
system behavior. The intent is to provide visibility of
the locations where time is spent in the different stages
of the transactions. Preliminary results based on differ-
ent types of traces provide evidence that the algorithms
presented in [1] do produce useful and accurate results.

Finally, the work in [38] uses Influence Diagrams to
model and tune the parameters for the Berkeley DB em-
bedded database system. Results indicate that the pro-
posed methodology is able to recommend optimal or near
optimal tunings for a varied set of workloads includ-
ing workloads that are not encountered during the model
training phase.

Although the above approaches have shown promising
initial results, they face some common challenges that
are generally not addressed within the scope of the work
so far. Even if the most general forms of some of these
challenges remain open problems in machine learning,
computational learning theory, or data mining, the ob-
stacles may be surmountable forspecific applicationsof
these approaches to real systems problem with robust en-
gineering solutions.

1. Model validity: How can we guarantee that at all
times the model being applied is valid, i.e. that it
usefully and correctly captures some essential char-
acteristic of the system’s operation? This is espe-
cially difficult when the behavior of the system be-
ing modeled changes dynamically and when both
the training data and the “ground truth” for evaluat-
ing model accuracy are incomplete or noisy.

2. Human in the loop: How do the operators of such
systems interpret what is reported by the model?
This includes issues such as visualizing results, con-
verting the model’s findings to actionable informa-
tion, dealing with false positives and false negatives,



generating explanations, and enabling the insertion
of human expert knowledge and feedback into the
models.

3. Maintaining searchable history of models output
How can we represent the output of the models to
enable search of past events and diagnosis/repair ac-
tions? This is important so that administrators can
leverage past diagnosis efforts, identify quickly re-
current failure modes, among other needs.

3 Challenge 1: A valid model anytime

What should the metrics of “validity” be, given the chal-
lenges of determining the ground truth (required to eval-
uate the model) under the less-than-ideal conditions of
a production environment? How do we know that the
training data is sufficiently representative of the data seen
during production operations—an implicit assumption of
most of these approaches? Any realistic long-term reso-
lution of these issues must provide a methodology as well
as algorithms and procedures for managing the lifecycle
of models, including testing and ensuring their applica-
bility and updating their parameters.

This challenge is not inherent in machine learning it-
self; indeed, that literature is rife with methods for eval-
uating and estimating1the accuracy of models, and with
metrics and scoring functions to compare different mod-
els against a dataset [16, 5, 22]. Moreover, statistics text-
books [32] provide algorithms for iterative loops com-
prising the steps and statistical tests for model evaluation,
model diagnosis, and selection of remedial measures to
repair the model (if possible). Model diagnosis involves
checking whether the assumptions embedded in the mod-
els (e.g., linearity of the data, Gaussian noise) correspond
to the data at hand; remedial measures may include en-
hancing the models with additional elements (e.g., met-
rics), or changing the type of model used (e.g., sets of
linear regressions, or nonlinear elements).

Such procedures, while rigorous and well-defined,
generally require human intervention to (sometimes vi-
sually) check the results of certain steps, adjust param-
eters and make decisions. The challenge is to automate
this process as much as possible by taking advantage of
our specific problem domain. A central aspect of this
challenge in our domain stems from the complexity and
dynamic behavior of the systems we deploy: changes
in the system can occur frequently and at unpredictable
times. Consequently, the machine learning procedures
described above require online implementations so that
models can be constantly updated to adapt to the changes

1Since we cannot guarantee that all the pertinent data is available
at training time, we can only produce an estimate of the accuracy of a
classifier [28].

in the system. Evidence of this need has been established
in [12, 27] with different models and conditions.

Various possible strategies to the model-validity prob-
lem might be considered:

1. Build an omniscient model capable of capturing all
relevant behaviors. This goal may be unrealistic ex-
cept in restrictive and benevolent environments. It
assumes that at training time we would have access
to enough data capturingall relevant behaviors.

2. Build a model with an identifiable set of parame-
ters that can adapt to new data. Besides identify-
ing the parameters themselves, this requires mech-
anisms for identifying the need for adaptation, exe-
cuting the adaptation (i.e. adjusting the parameters),
and data aging.

3. Rely on an ensemble of models. Different mod-
els in the ensemble are used in different situations.
This requires mechanisms to select which model(s)
to use in a given situation, decide when a new model
must be added to the ensemble, merge inferences
from different models, and discard obsolete models.
One example of this approach is described in [41].

There is considerable work in machine learning, com-
putational learning theory (COLT), and data mining ad-
dressing these issues (e.g. [9, 29, 4, 20]. The challenge
is to adapt these approaches and enrich them with the
particulars of our domain.

Another validity-related challenge involves estimat-
ing the amount of data required to build accurate mod-
els. Despite existing theoretical bounds and much re-
cent progress [14, 25], results for representations such
as Bayesian networks don’t come easily [21] and re-
searchers often resort to empirical estimation proce-
dures. Although progress on this front has also been
made in specific situations (e.g. [41]), we still lack well-
engineered general approaches valid in the system do-
main.

Finally, validation of these models and techniques
continues to be a major hurdle. In controlled settings,
we may check some of the results by, e.g, injecting spe-
cific system conditions and verifying that they are cor-
rectly identified/diagnosed by the model. But in produc-
tion systems, more often than not this “ground truth” will
be unavailable, incomplete, or noisy. For example, an
operator may suspect that some problem was being man-
ifested in the system during some time period, but be un-
able to determine conclusively that a particular problem
occurred at a particular point in time, or lack sufficient
forensic data to reconstruct a problem and diagnose its
true root cause (as was reported, e.g., in [7]). To make
matters worse, more and more businesses may be will-
ing to provide production data, but either unwilling or
unable to provide the ground truth underlying that data,



which is required to objectively measure the success of
a method. In other communities, such as computer vi-
sion and bioinformatics, standard datasets have been col-
lected and often manually analyzed, providing the means
to objectively test and compare different machine learn-
ing methods. Such standard datasets are still missing in
the system domain. We and our colleagues have called
for the creation of an “open source”-like database of real
annotated (but sanitized) datasets against which future
research in this area could be tested [18], which could do
for this line of applied research what the UC Irvine repos-
itory did to advance Machine Learning research [6].

4 Challenge 2: The human in the loop

Imagine a system administrator whose responsibility is
to execute a triage as soon as system health or perfor-
mance indicators indicate alarm. Depending on the out-
come of the triage, the operator must call the system ex-
pert, application expert, network expert, or database ex-
pert. Ideally, the administrator would not only offer a
justification for the triage and the decision to call a spe-
cific expert, but also provide possible explanations for
the apparent system misbehavior. Such a scenario, which
is quite common in real systems, illustrates that at vari-
ous levels, humans with different knowledge and levels
of expertise would be expected to interact with the mod-
els and their inferences. Can the models and their infer-
ences be “interpreted” to generate the justifications and
explanations that operators require?

In [12], the choice of Bayesian networks as the basic
representation of a model was justified, in part, by the in-
terpretability and modifiability of these models [23, 34].
It is also well known that decision trees can be used to
generate “if-then” rules and part of the field of data min-
ing concentrates on these issues [40, 35, 10]. These may
provide initial building blocks, but much more research,
engineering, and customizations are required to elevate
these to the level of usable tools in the systems diagnos-
tics domain.

We take as a given that the problems of false positives
and missed detections (false negatives) will always exist.
A major e-commerce site has reported false alarm rates
in excess of 20% during normal operations. We there-
fore advocate research directed at minimizing their im-
pact. A first step would be to translate the scores assigned
to models during evaluation to a measure of confidence
or uncertainty on the recommendations from these mod-
els. A second approach is to favor actions that are likely
to have a salubrious effect if the alarm is genuine, but
have relatively low cost if performed unnecessarily [8].
A framework for combining these ideas may be provided
by casting the problem in decision theoretic terms: in
this normative approach, the uncertainty of events, the

cost/utility of repair actions, and the uncertainty of out-
comes are combined to maximize expected utility (mini-
mize expected cost) [34, 15].

In many cases, classifying an alarm as a false posi-
tive will still be the prerogative of the human operator.
Can we design mechanisms and interfaces so that their
expert knowledge can be used to enhance and improve
the performance of these models, for example in help-
ing them classify alarms rapidly? Can we also provide
mechanisms so that feedback on model performance can
be incorporated and used to change these models as ap-
propriate? One strategy is to combine the formal models
with other interpretive and diagnostic tools that play to
the strengths of humans; for example, [7] presents evi-
dence that combining anomaly detection with visualiza-
tion allows human operators to exploit their ability for
visual pattern recognition to rapidly classify an alarm as
a false positive or genuine one. The challenge is to take
the data generated by the many sensors, automatically
filter out noise, find correlations, and display the infor-
mation. Another method for using the human operator is
known asactive learning, a method in which the human
is queried to provide additional information that would
provide the most benefit in reducing false positives and
missed detections [30, 13, 39].

5 Challenge 3: Querying the system’s past

The third challenge we present concentrates on enabling
the creation and management of a searchable history
of the sytem’s performance. The main benefits of this
would be: (a) Similarity-based search for past diagno-
sis and repairs; (b) identification of recurrent problems2;
and (c) groupings of problems to enable identification
and prioritization.

We concur with Redstone et al. [37] that a first task is
constructing a representation that captures the essentials
of the system state for characterizing an undesirable (or
desirable) observed behavior, and that can be generated
in an automatic fashion. We will call this representation
a signature.Signatures should be amenable to manipu-
lation by computers, such as similarity based retrieval,
and to annotation by experts with information regarding
previous diagnosis and repairs; these abilities would en-
able the application of semi-supervised learning meth-
ods [31, 33] to improve the retrieval of proven solutions
to recurring problems and identification of new prob-
lems. Signatures could also be subjected to automated
clustering [16] to group similar problems into common
“syndromes”.

A primarily challenge, then, is to identify suitable sim-

2Although we have concentrated on indexing undesirable system
states, the same ideas can be used to capture “favorable” states.



ilarity metrics to use in both retrieval and clustering. We
attempted to generate signatures from the output of the
probabilistic models described in [12, 41] for attributing
application level performance problems to specific low-
level metrics. During every 5-minute epoch, the models
provide a list of system metrics that correlate with a vi-
olation of a performance objective, or a list of metrics
whose values are abnormal in cases where the system
is in compliance with the performance objective. These
lists, plus additional information such as degree of cor-
relation to the performance problem and other statistical
related measures, are used as the signature. Though our
prototype attempts to address the third challenge, in de-
signing it we had to address the first two challenges as
well.

Initially we used hand-labeled training data, and
induced performance problems to confirm that our
signature-generation method displays good similarity re-
trieval capabilities as well as good clustering properties.
The “validity” challenge arose when we applied our tech-
nique to a production system. Decisions for the sizes
of several windows of data had to be determined would
have benefited from principled or well engineered meth-
ods for establishing the data needs for accurate models,
and how these vary as the input varies. We were encour-
aged by the fact that we were able to use our signatures
to identify all instances of a known problem. This prob-
lem took several weeks to identify as being recurrent, and
generated over 80 pages’ worth of text messages among
geographically distributed system operators. Our signa-
tures identified other sets of multiple incidents as poten-
tially belonging to a single “syndrome” (recurring prob-
lem), but since the data corresponding to observed per-
formance problems was only partially labeled, we con-
tinue to work with the operators to attempt to determine
whether these findings and groupings are actually cor-
rect.

The “human in the loop” challenge was evident in our
struggle to find visualization mechanisms to help oper-
ators compare different signatures. In addition, we still
lack a systematic way to incorporate operators’ expertise
back into our methods. These problems are further con-
founded by the fact that responsibility for different tiers
of our production system (application server, database,
etc.) spans organizational boundaries across which there
are differing techniques for data collection, troubleshoot-
ing, and alarm handling.

6 Conclusions

Recent research has demonstrated that it is possible to
automatically induce models from raw data collected
from a running networked system, and that these mod-
els can indeed transform raw data into useful informa-

tion for many tasks related to performance debugging
and isolation, anomaly detection, detecting and localiz-
ing non-failstop failures, among others. We are excited
by the potential of these approaches in increasing the ef-
ficacy and efficiency of the management of complex IT
systems.

With IT budgets dominated by human operator costs,
the potential benefits would be significant even if these
techniques only served to increase the effectiveness of
less-experienced operators. We believe, however, that
even experts will benefit from being able to quantify their
intuitions about correlations, breaking points, and pat-
terns of behavior. In addition, the possibilities of explor-
ing the data efficiently will provide tools for testing new
hypotheses and “what-if” scenarios.

We do not, of course, advocate statistical, probabilistic
modeling, and pattern recognition techniques as the so-
lution to all “self-*” problems. Beyond the well-known
limitations of the benefit of automation and the prob-
lem of “automation irony” [36], the essence of the pro-
posed research agenda is to understand the particular
limitations of statistical approaches as applied to system
problem detection, localization, and ultimately diagno-
sis. In order to understand these limits, we must iden-
tify the fundamental challenges that will be faced by any
work in this area. We have attempted to formulate three
such challenges and show how they arise in real prob-
lem instances. With the availability of high-quality open-
source implementations of statistical induction and pat-
tern recognition algorithms [3, 24, 40] and increasing in-
terest in the integration of measurement frameworks with
system middleware, now is the time to vigorously pursue
this line of research and identify the limits and benefits
of these approaches.
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