A Conceptual Framework for Network and Client Adaptation

B. Badrinath, Armando Fox, Leonard Kleinrock, Gerald Popek,

Peter Reiher, M. Satyanarayanan

Abstract

Modern networks are extremely complex, varying both gaticaly and dynamicaly. This complexity and
dynamism are greetly increased when the network contains mobile dements. A number of researchers
have proposed solutions to these problems based on dynamic adaptation to changing network conditions
and gpplication requirements. This paper summarizes the results of severa such projects and extracts
severd important generd lessons learned about adapting data flows over difficut network conditions.
These lessons are then formulated into a conceptua framework that demonstrates how afew smple and
powerful ideas can describe awide variety of different software adaptation syssems. This paper
describes an Adaptation Framework in the context of the several successful adaptation systems and

suggests how the framework can help researchers think about the problems of adaptivity in networks.

1. Introduction

Computer networks are becoming increasingly complex and variable, with mobility exacerbating the
problem dramaticaly. Severd researchersin the field of networking and distributed systems recognized
this problem in the recent past, and started designing solutions to the problems of complex varighility.
Many of these researchers addressed the problem through different forms of software-supported
adaptivity. Recently, systerns embodying their ideas have been built, tested, validated, and, in some

cases, deployed for production use, demonstrating the rea power of software-supported adaptivity.

The authors examined the characteristics of the adaptive software systems they built and discovered that

athough the systems were independently designed and built, they shared three kinds of commonality:

1. Thesygems shared certain fundamenta characteristics that could be described in fairly sim+

ple architecturd terms.
2. Thedesgners made smilar design choices across the different systems.
3. Similar lessons were learned in the design and implementation of the different systems.

The framework presented in this paper captures these commondities, clarifies several issues surround-
ing the structure and design of software that adapts to difficult network conditions, and suggests key
issues that require further investigation in thisfield. The framework can aso help other researchers

characterize their own adaptive software and understand how it relates to other systems.

In section 2, we discuss in more detail the characteristics of modern networks that motivate the need for
adaptivity, especidly in the mobile computing arena. Section 3 briefly describes some of the systems

that provided ingpiration for the framework. Section 4 describes the framework. Section 5 presents how
each of the sample systems from section 3 fitsinto the framework. Section 6 suggests ways in which the
framework may help other researchers think about the structure of their own adaptive systems. Section

7 concludes with open issues that the framework exposes and suggests areas of future work.

2. The Need for Network Adaptation

Many of the characterigtics of modern networks vary dramatically. Bandwidths currently provided by
networking hardware in daily use range from afew tens of kilobits per second up to thousands of
megabits per second. Similarly, bit error rates of commonly used network devices span orders of
magnitude. Latencies can range from nanoseconds to large fractions of a second. Networks that contain

mobile elements tend to experience awide range of these characteristics, often with rapid changes.

The scale of today’ s and tomorrow’ s networks adds great complexity. High growth rates are expected

for the future, even leaving aside the additiond scaling potentia of “smart spaces’, where many hillions

of tiny embedded devices worldwide will have some networking capabilities. Such scale makes any

form of gatic planning or optimization of network operationsimpossible.

We aso demand far more of our networks than ever before. Not only isthe total volume of traffic
increesing at an darming rate, but also new applications put new kinds of demands on the network.
Web browsing, video conferencing, and Internet telephony have very different network requirements

than such old Internet staple gpplications like dectronic mail and file trandfer.

Mohility greetly exacerbates the problem. Many of the computers being sold today are either portables
or handheld devices. In the smart spaces world of the future envisoned by some, extremdy smdll
embedded devices will travel everywhere, be embedded in everything from walls to automobiles to
shoes, dl the while communicating, processing, controlling, actuating, capturing data, etc. A

bewildering array of wireless networksis being deployed to serve such mobile devices.

The mobile environment also introduces another complication: heterogeneity in the communicating
devices. Cdl phones, persond digitd assstants, pamtop computers, digitd pagers, digital cameras and
portable computers dl have different cgpabilities and different requirements. Part of the difficulty of
adaptation in the mohbile environment is not just to deliver data over chalenging network conditions, but

to ddiver it in formats suitable for the devices that need it.

Other issues, such as security and economic questions, also complicate the problem. Generally, adding
the need for security to any computing question complicatesit. The existing networking infrastructure
that we have inherited was not designed with commercid usein mind; as aresult, performing efficient,

safe business transactions over that network infrastructure is chdlenging.

Moreover, the existing network protocols that have enabled the Internet revolution are not perfectly

suited to the environment they themselves have created. TCP, for example, does not work well on noisy

links (e.g, many wirdess links), and often behaves poorly over satdlite links due to long latencies.
Researchers have changed some protocol s to handle such problems, but our understanding of networks
isinsufficient to dlow usto design protocols that behave wdl in the face of al probable network
conditions. Even if we could develop such protocols, we would face the chalenge of converting the
enormous indalled base of today’ s network infrastructure. The Internet is distributed, decentralized and

vadt, and the smple solution of complete replacement of that existing infrastructure is daunting.

But it isimportant to redize that even if we could successfully deploy new protocols quickly, problems
would gill remain. Thered god of adaptive networking isto provide good end-to-end service, where
the end points are located in applications. Without considering the needs of gpplications and their users,

no adaptive solution at the network level aone can solve the entire problem.

These trends suggest that we must dedl with larger, more variable, more complex, rapidly growing
networks that must meet ever increasing demands, yet rely largely on existing networks and protocols.
One generd class of solutions to solving this problem isto dlow various forms of adaptation of network
traffic. Such solutions allow hardware or software to dter the protocols or the data content being

transmitted to provide a better qudity of serviceto users.
Data flows over networks can be usefully adapted in many ways.

The underlying protocol can be dtered to handle difficult conditions. The Berkeley snoop protocol
improves TCP over high error rate links [BSAK95]; an adaptation mechanism can dip the snoop

protocal into place when such links are established [AHK O97].

The data can be dtered in alosdessway. Various systems alow data compression or encryption

across links with poor connectivity, without any gpplication involvement.

Lossy adaptations can be used to obtain better compression of data over limited links by dropping
inessentia portions of the information, or sending alower-fiddity verson. TranSend improved

performance by an order of magnitude or better using lossy compression [FGCB98].

Data can be automaticaly converted to formats better suited to the end systems or the intermediate
networks. The Top Gun Wingman browser [FGG+98] converts Web images into 2-bit grayscae
bitmap displays before sending them to PAim Filots. Mowgli [LHKR96] converts GIF images to
more compact JPEG before sending them over wirdess links. Although adaptation to client hetero-
geneity is an important arealin which extensive work has been done (see [FGCB98] for an overview
and pointers to related work), in this paper we focus on adapting to network variability, remarking

that the architecture we describe has been successfully used to address client adaptation as well.

Adaptive solutions to network problems embrace many interesting variations: the various proxies built

at Berkdley [FGCB98], the Odyssey system [NSN+97], transformer tunnels [SB98], active networks
[TW96], and intdligent agents [TK96]. While these systlems have some very sgnificant differences, dl
offer methods of changing the contents of the transmitted data or the methods used to send that data. All
adapt to changing conditions specific to the data transmission requested, or to prevailing network
conditions, or to needs of the users. This body of research has many successes, but none claim to solve
the complete problem or even to suggest aframework for thinking about the problem and its solution

This paper’ sgod is to propose such aframework.

3. Some Characteristic Adaptive Systems

Although & firgt glance there may appear to be little commonality across the wide variety of approaches
to network adaptation, sgnificant commondity is reveadled by closer examination of the decisons made
by independent researchers taking different approaches to the problem. We present below severd

independently designed, operational systems developed by one or more of the authors. While the chosen

systems certainly do not cover dl work donein the field (or even dl work in the field by the authors),
they illudrate the wide variety of possibilitiesin adaptive network software solutions. Each system’s
designers started from the assumption that adaptivity was required to solve some set of problems, but

otherwise the design assumptions varied radicaly. Examples of differences include the following:

Application-transparent vs. application-aware adaptation: is the gpplication informed that adaptation
is occurring and perhaps expected to provide an application-leve response (asin Odyssey), or does

the system attempt to completely shield the gpplication from thisfact (as in Conductor)?

Genera vs. gpplication specific adaptation: does the system provide general machinery to support a
collection of unrelated gpplications (as in disconnected file systems such as Coda), or does it support

a specific gpplication or narrowly-defined class of applications (asis the case for TranSend)?

Does the adaptation machinery resde in the client, in the server, in one or more intermediate

proxies, or al of these?

Despite such differing goals and assumptions, some key common idess and themes emerged. We now
examine these example systems, which on the surface appear extremdly different. Closer examination
of their conceptud architectures, however, reveds strong smilarities, which we tie together with the

framework we describe in Section 4.

3.1 UC Berkeley TranSend

UC Berkeley’s TranSend Web accelerator proxy [FBA96] was one of the earliest projects to explore
adaptation proxies aggressively. TranSend intercepts HT TP requests from standard Web clients and
applies datatype- specific lossy compression when possible; for example, images can be scaed down or

downsampled in the frequency domain, long HTML pages can be broken up into a series of short pages,

etc. TranSend's primary god was to provide network adaptation for users of dow links, suchasUC

Berkeley’ s modems or the Metricom Ricochet service [Met94], which is popular in the Bay Area

TranSend supports awirdess vertical handoff mechanism [SK97]. When aclient equipped with
multiple wirdess interfaces switches between wirdess networks, the client-sde vertica handoff

software (which is completely independent of TranSend) generates a notification packet containing

some essentia characterigtics (e.g., estimated expected throughput) of the new network. This packet
would be sent to a speciad UDP port on TranSend where the notification would be processed and stored
in aper-client profile. TranSend would then process future requests from that client in accordance with
the new network type; for example, very aggressive image downsampling was performed for clients
connecting over Ricochet with an expected throughput of 15-25 Kb/s, whereas compression was much

less aggressive (and in some cases disabled) for Wavel AN clients connecting at about 1 Mby/s.

Because HTTP isa“stackable’ protocal (i.e. it is possible to have several HTTP “hops’ in arequest
chain), TranSend- based adaptations are naturaly composable, alowing amultilevel system with some

“basdling” compression performed far upstream, and additiona compression performed near the clients.

TranSend evolved into a generd system for deploying scaable, fault-tolerant adaptive applications
[FGCB98]. Top Gun Wingman [FGG+98], for example, alows users of thin clients such asthe USR
PamPilot handheld device to browse the Web. Although smilar in spirit to TranSend, Wingman
provides an additional service, anetwork adapter. TranSend uses HTTP to communicate with clients
and servers, but the PAlmPilot’s modest capabiilities suggested a smpler protocol. A ssimple datagram:
basad dlient-to-adapter protocol that aso encapsulates security and encryption was crafted for Wingman.
Wingman's proxy-side adapter trandates between this protocol and HTTP, giving Wingmean the ability

to access existing Web servers. When Wingman was evolved into a PAmPilot implementation of the

shared whiteboard [CFMB98], the network adapter was augmented to tunnel multicast to the PAmPRilot

over aunicast TCP comection, to compensate for the PAmPilot’ s inability to handle multicast directly;

thisis another example of network adaptation.

3.2 CMU Odyssey

Odyssey isasystem built & Carnegie Mdlon University to support chalenging network applications on
portable computers [NSN+97]. Odyssey particularly focuses on resource management for multiple
gpplications running on the same machine. Odyssey was designed primarily to run in wirdess
environments characterized by changing and frequently limited bandwidth, but the modd is sufficiently
generd to handle many other kinds of challenging resource management issues, such as battery power or
cache space. The god of the system isto provide al gpplications on the portable machine with the best

qudlity of service consstent with available resources and the needs of other gpplications.

Odyssey is an gpplicationaware approach to adaptation intended primarily to assst client/server
interactions. The Odyssey system congists of aviceroy, an operating System entity in charge of
managing the limited resources for multiple processes, a set of data type-specific wardens that handle
the intercommunications between clients and servers, and applications that negotiate with Odyssey to
recelve the best leve of service available. Applications request the resources they need from Odyssey,
specifying awindow of tolerance required to operate in adesired manner. If resources within that
window are currently available, the request is granted and the client application is connected to its server
through the appropriate warden for the data type to be transmitted. Wardens can handle issues like
caching or pre-fetching in manners specific to their data type to make best use of the available resource.
If resources within the requested window are not available, then the gpplication is notified and can
request alower window of tolerance and corresponding leve of service. As conditions change and

previoudy satisfied requests can no longer be met (or, more happily, conditions improve draméticaly),

the viceroy uses upcals registered by the applications to notify them that they must operate in a different

window of tolerance, possibly causing them to dter their behavior.

3.3 UCLA Conductor

The UCLA Conductor system alows deployment of cooperating adaptive agents at specidly enabled
nodes throughout a network [YRP99]. Conductor is an applicationtransparent adaptation mechanism.
Applications can benefit from Conductor without being recoded or explicitly requesting its services.
Instead, the underlying system is configured to indicate what kinds of data flows Conductor is capable

of assgting and the Conductor system automatically traps and adapts those data flows.

Conductor aso handles issues of composing adaptations in support of asingle flow at multiple nodes.
Conductor determines the characteristics of the data path from source to destination and determines if
the path will meet the needs of the applicationsusing it. If not, Conductor will automaticaly deploy
adapters at one or severd of the available nodes aong the path to adapt the data flow to network
conditions, alowing better gpplication-visible network behavior. Conductor plans the cooperative

behavior of the agents and handles problems of trangent or long-term failure of particular adapter nodes.

Conductor is designed to handle generd- purpose adaptations, including both lossy and losdess
adaptations. Combining lossy adaptations and rdiability is espedidly chdlenging, snce alossy adapter
may drop part of the data or may transform severa data packets into fewer packets. If an adapter or its
node fails, some of the adapted packets could be ddlivered while others were not. Without the lossy
adapter’ s state to determine which origina packets were dropped or coaesced, the system may find it
difficult to resume transmission without elther duplicating aready received information or failing to

deliver required information Unaware applications are generdly unprepared for either problem, so
Conductor must hide these problems from such gpplications. Conductor attaches numbers to pieces of

semantic content that do not vary when adapted. For example, if every other packet is dropped, the

undropped packets are renumbered to include the dropped packets. The system isthus able to determine

which information has and has not been ddivered despite failures.

3.4 UCLA Smiley

Smiley isan intdligent agent real-time program developed at UCLA to augment Web browsers [JK99].
It has two components: (i) a dynamic Graphica User Interface that informs users of the nature of the
links on a Web page, and (ii) atransparent agent that prefetches carefully selected links. The GUI
provides users a measure of the quality of connectivity available between themsdves and the servers
they contact to obtain Web pages [JK99], and of the nature of the dataresding behind thet link. 1t was
designed to handle both the kinds of limited links common in mobile computing and genera connec-
tivity and bandwidth problemsin the overal network. Smiley’s GUI provides user feedback, in the form
of augmentations to the links shown on a Web page, dlowing the user to predict the likely effect of
clicking on aparticular link. Thisfeature dlows a user to avoid requesting a page thet is unavailable or
will take along timeto retrieve. Smiley prefetches web pages intelligently to dlow users to browse
more effectively over limited and varidble links. A prefetch threshold adgorithm is used to decide when
to prefetch aweb page the user hasn't yet asked for. Smiley indudes modd s that consider different
users associated with different time and bandwidth costs, trying to minimize the average cost for each

request in the entire system.

3.5 CMU Coda

Codais an optimidtic file replication syssem developed for the mobile computing environment that uses
client/server optimigtic replication to maintain replicas of files required by disconnected or poorly
connected clients [KS92]. Optimigtic replication permits any replicaof afile to be updated fredly (as
alowed by normd file system access permissions), without regard to the status of other replicas.

Optimidtic replication provides great performance and availability advantages over other replication

10

dternatives, at the cost of occasionally permitting concurrent updates. Experience with and measure-
ments of Coda[KS92] and other optimistic replication systems [RHR+94] shows that concurrent

updates are uncommonin practice, and many of them can be resolved without human intervention.

Coda’ s server copy is kept on awell-connected machine that the portable computers contact when
possible. Updates performed by the portable computer during disconnection are saved in alog, whichis
replayed to the server when possible. The server detects any concurrent updates and rejects them,
requiring the client to use automated conflict resolution mechanisms to resolve any problems resulting

from such concurrency [KS93, KS95]. The client portable aso requests new updates from the server.

Adapting to network conditions was not the primary goa of Coda, but experience with its operation in
the mobile environment caused the Coda designers to extend it to do so [MESO5]. Coda performs
trickle reintegration when only limited bandwidth is available for communicating updates to the server.
This method of reintegrating updates from the mobile computer to the server dlows effective, adaptive

use of the available bandwidth between the two machines.

3.6 Rutgers Environment Aware API

Application adaptivity implies that gpplications must be structured to recelve natifications about any
important changesin the environmentd state and to react appropriately. Since the network stateis
complex, the applications mugt interact with many environmental conditions, sources, and possible
reactions. The Rutgers Environment Aware APl addresses this problem. This APl isbased on aflexible
mechanism for asynchronous event ddlivery. Environmenta changes are mode ed as asynchronous
events that are delivered to mobile computing gpplications over an entity caled an Event Channd
[WEBAQ98]. This entity implements the event delivery mechanism. The events are organized as an
extensible type hierarchy, and the architecture itsalf can be configured and extended. This extenshility

enables support for anew condition to be easly incorporated into an existing sysem. A nove feature of

11

the AP isthe ability to utilize event type information not only to filter out uninteresting events, but also
to handle an event at an appropriate level of abdtraction. An gpplication that chooses to be environmen-
tally aware creates a handler for that event type. The gpplication specific response to the new Stuation is

encoded in this handler and isinvoked when the appropriate event is ddlivered.

4. A Conceptual Framework for Network Adaptation: The Adaptation Framework
Careful thought about these and other network adaptive systems reveal's important common themes. We
now present a conceptua framework that encapsul ates those themes. Each of the systems presented

above maps well into this framework, despite their many different details.

The framework had to display certain characteridtics:

it should encompass al reasonable dternatives to magor desgn questions

it should be as smple as possble (but, to quote Einstein, no smpler)

it should consder issues of incrementa deployment of different technologies, interoperation with

legacy systems, and other practical issues

it should make interoperation between different adaptation technologies easier

it should digtill the extensve knowledge, experience, and real systems produced for adaptation

it should provide a gtarting point and common vocabulary for describing future work in the

important area of adaptive architectures
it should not preclude future innovations that provide dternative approaches to adaptive networks

Data flowing across an arbitrarily large and complex network of varying characteristics should be
delivered to its destination in the best manner possible, given avariety of condraints. Some of these

congraints relate to physica and technologicd limitations, such as the speed of light or the capacity of a

link on the path. Others relate to systems concerns, such as the need to share alink or the costs of
providing religble delivery. Given the wide variety of possible conditions that could be present in the

network, many different adaptations to the data flow could prove beneficid.

The essence of the problem isillustrated in Figure 1. A process on a source node sends data to a process
on adegtination node. The data flows across various links and nodes in the network. The thickness of

the connecting linesis meant to suggest relative capabilities of the links involved in the data flow.

—

PO o B

Sour ce Destination
Figure1l: A dataflow in avariable network

To some extent, this figure is a smplification of the generd problem. It shows a smple data flow with
asingle source (S) and destination (D), and it does not illustrate problems such as ddlivery deadlines or
security concerns, nor does it suggest the level of complexity possible in even a single network data
flow. But the figure captures the heart of the problem. A stream of data flows from a sourceto a
destination across a network, using links of varying cagpabilities. At someor dl pointsin the network,
dtering the data flow in various ways could lead to better overal results, from the point of view of the
sender, the receiver, the administrator of the network, or the complete population of network users.

Without some mechaniam to apply such adaptations, however, no improvements can be made.

FHgure 2 shows how the introduction of adapters dters the Stuation. Now, the data can be dtered in
various ways, dlowing for better results. Adaptation Agencies (labeed AA in the figure) represent
many different kinds of adaptation mechaniams, from adaptive protocols to heavyweight code executed

on behdf of the dataflow. Note that al adaptive componentsin this diagram are optiond, and that any

13

sngle AA can be replaced with multiple AA’s arranged in complex ways. The degenerate case where dl

are omitted isasmple dient-server or peer syslem with no adaptivity support.

s |lan _E_._E aall b

Figure2: Adaptersassist thedata flow

Figure 3 shows how the Adaptation Framework fillsin the details of Adaptation Agencies. An AA

consigs of severd parts.

“You get...” Rsrc Mgt & :
Evt Mgr " Mon (RM)

(EM) £

; “l want...”

- — Network API E
pa ' if Kk (unicast,
|[||] App-Specific ﬂ@)@
Adapter (ASA) cadt, bCBSt geo

Figure3: An Adaptation Agency

The Event Manager (EM) monitors the AA’s environment. The components of that environment are
defined broadly, for generdity, but are likely to include things like traffic and error conditions on
network links, available CPU cycles on alocd processor, or security threats that have been detected.
The event manager can receive control messages that will dter the behavior of the AA. These

messages can originate from other AA’s, from local operating system services, or from applications.

The Resource Management and Monitor (RM) component handles resources under direct control of
the AA. If the AA has been dlocated a certain percentage of a data link’ s bandwidth, the RM

determines how to best use that bandwidth to meet the needs of dl data flows under its control.

14

Each AA may contain zero or more Application Specific Adapters (ASA’s). These modules are
capable of performing some particular adaptation on adata stream. Each ASA requires certain

resources to perform its adaptation properly.

An Adaptation Agency accepts data from some source and ddlivers possibly adapted data to some other
destination. The source may be one network link and the destination another network link, but source
and degtination might also be other AA’s. If aparticular AA isworking directly with a network,
however, it will have some knowledge of the specifics of that network, such as whether the network

supports broadcast or not. The AA can use this knowledge when performing adaptations.

o AA boundary
.| RM
EM 3. u
15. | 2
L s :

U::>L asa U-
1.~ P 6.

Figure4: Data Flow Through an AA

The connection and interaction of AA componentsis aso important. (Seefigure4.) Generdly, data
comesinto an AA and isdelivered to one of its ASA’s (1), which decides whether to adapt the data. If
resources are required for an adaptation, the ASA requests them from the RM (2). The RM can accept
or rglect such arequest, based on what resources are available and its resource alocation algorithms.
The RM obtains the availability information from the EM (3), which sends the RM updates whenever
ggnificant events occur. When the RM has decided on how to handle arequest from an ASA, it informs

the EM of the new resources that have been made available to the ASA (4). The EM can then dter its

15

view of loca conditions, and can aso deliver the response to the ASA (5). The EM will dso signd the
ASA when other stuations lead to changes in conditions relevant to ASA operations. After adaptation,

the ASA passes the adapted data into the network for delivery to the destination or the next ASA (6).

AA’s can be organized hierarchicaly, with one AA controlling agroup of other AA’s, dlowing the
framework to specify that one entity control a shared resource for severa other entities. Figure 5
demondtrates this concept. Two digoint data flows pass through asingle physica entity, which could be
agaeway machine, anetwork link, or an entire loca areanetwork. The data flows must in some way
share the physicd entity’ s resources. The adaptation framework handles thisissue by permitting a
higher level AA to assume control of dl of the physicd entity’s shared resource. It then communicates
with the Event Managers of the AA’s actudly supporting the two data flows to tell them how much of
the shared resource is available to them. These lower level AA’sin turn communicate interndly with
the ASA modules chosen to use for adaptation of each dataflow. The hierarchy can continue to higher
levels, if necessary, alowing one st of AA’sto handle data flows, ahigher level set to mediate shared
use of a switch or gateway, and an even higher level AA to coordinate overal network activity through

itsingructions to the middie levd AA’s.

EM |RM

EM RM\

EM |RM |l<d—P

EM |RM

™ Physical Collocation boundary
Figure5: Adaptation Agenciesusing a shared resource

16

5. Mapping Real Systems Into the Adaptation Framework

The Adaptation Framework is intended to encompass awide variety of adaptation mechanisms. Here
we describe how the systems described in section 3 can be fit into this framework. For each system, the
accompanying diagram shows as shaded the sections of asingle ASA (or, in some cases, multiple

ASA’s) that are provided by that system.

5.1 TranSend

TranSend can be thought of as acomplete Adaptation Agency (AA) thet initidly ran on asingle
workstation but was later extended to run on acluster. The entire cluster can be regarded asasingle
AA that serves extremely large communities of users [FGC+97]. Within the AA, TranSend contains a
separate ASA for each MIME type (GIF, JPEG, HTML, etc.) Incoming datais either passed to the
appropriate ASA by type, or passed directly through the AA to the client if no appropriate ASA exidts.

The ASA then performs datatype- Specific lossy compression before forwarding the data.

Trmrmrrree AA hniindary =

Figure 6. Mapping TranSend to the Adaptation Framework
Transend' s verticd handoff mechanism worked with asmple Event Manager (EM) to determine when

handoff was necessary. Because TranSend was designed under the assumption that it would have use of

17

al the workstation’ s resources, no RM was designed into it. However, externad RM schemes such as

SRI's Resource Management framework should be able to interoperate with TranSend.

5.2 Odyssey
Odyssey fitswell into the adaptation framework. Odyssey on aportable nodeisasingle AA. The
viceroy isacombination of resource manager and event manager. The wardens are ASA’s specific to

individua datatypes. One Odyssey AA can host several warden ASA’s.

Oneinteresting aspect of Odyssay with regard to the adaptation framework is that much of the
adaptation in thismodéd is actudly done by the gpplications, which interact with Odyssey. For example,
Odyssey itsdf doesn't decide that color video frames should be converted to black-and-white, but rather
ingtructs the gpplication that some action is required. The application itsalf decides how adaptation
should occur, and typically ingtructs its server to make the adjustment. Alternately, the application can
request even higher-level control, such as requesting user advice on the kinds of adaptations that should
be applied when conditions change. This agpect highlights the architecture sinclusion of the possibility

of contral traffic between applicationsand AA’s.

- A houndary

Figure 7: Mapping Odyssey to the Adaptation Framework

18

5.3 Conductor

Conductor can be regarded as a set of complete AA’ s that cooperate to plan and regulate the overdl
behavior of aconnection. Each Conductor node hosts an AA that will alow adaptation of multiple
flows through that node. The Conductor AA contains a RM that alocates the resources the node makes
available to Conductor between the different flows the local Conductor AA controls. It has an EM that
captures new data transmissons coming in or originating at the node, monitors the progress of data
flows, and watches for control information sent by other Conductor AA’s. Multiple ASA’s can be run at
agiven Conductor node, either composed for the benefit of a single data flow, or separate for the benefit
of multiple independent data flows. The Conductor architecture aso permits independent data flows to

share an ASA, such as a caching or prefetching adapter.

Conductor sends information between its AA’ sto asss in planning the deployment of agents and to
waich for failures. Thisinformeation is processed in adigtributed fashion. Essentidly, the AA’s
cooperate to create a plan at the start of adataflow. This plan indicateswhich ASA’ s should be located
at given nodes, and may suggest how each ASA should behave. If connectionsfail, the nodesinvolved
in aflow on @ther 9de of the failure can replan to handle the faillure. They can choose to shut down the
flow, re-route the flow (requiring, in genera, anew plan and new ASA’s), or perform someloca actions
in anticipation that the failure will be fixed shortly. An example of the latter would be prefetching data

from the source while waiting for atrandent connection to regppear.

Figure 8: Mapping Conductor to the Adaptation Framework

19

5.4 Smiley

Smiley can be regarded as a specid purpose AA that resides on amobile node, supporting asngle
adaptation. 1t contains an RM that worries about the available link bandwidth, an EM that sends out
probes to the network to determine connectivity and latency information, and prefetching and page

rewriting ASA’s. Smiley isan example of an AA that mapstightly to a particular application.

Figure9: Mapping Smiley to the Adaptation Framework

5.5 Coda

Coda shows how the framework can incorporate gpplication and system software with adaptive
components. Coda' s trickle reintegration suggests an AA at the client side that uses an event manager to
monitor the available bandwidth. The Coda cache manager, Venus, combinesthe ASA, EM, and RM
functions. Venus actslike an ASA to select updates to reintegrate with the server replica and feed them
across the limited bandwidth link. Venus aso performs EM functions to wetch the link and RM

functions to handle usage of the link.

20

Venus AA Coda Client Trickle
Reintegration AA

Figure 10: Mapping Codato the Adaptation Framework
5.6 The Rutgers Environment Aware API

The monitoring and delivery of events over the event channd in the Rutgers gpproach is an example of
the EM in the architecture. The EM monitors the environment and aso delivers events of interest
according to a system-defined policy. The event handler aso provides aframework for implementing an
ASA. The gpplication can ingdl separate ASA’ sfor each interesting event type. When the EM ddlivers
anotification, the appropriate ASA isinvoked. The ASA responds to the new Stuation appropriately for
its gpplication For example, when anew network is detected, the characteristics of the network such as
expected bandwidth are encapsulated in the event. The ASA can use thisinformation in its response by

changing the transmission from rich data to summary dataand vice versa

T AA boundary

Figure 11: Mapping the Rutgers Environment Aware API to the Adaptation
Framework

21

5.7 Commercial Systems
The research projects discussed in this article have aready influenced commercid efforts. The network

adaptation ideas pioneered in TranSend have gppeared in various commercia productsincluding Intel
QuickWeh. The more aggressive adaptation pioneered in the Top Gun Wingman handheld Web
browser has been commercidized by ProxiNet, Inc. (now adivison of Puma Technology). Emerging
mohile-computing standards from the W3C (World Wide Web consortium), including XML (Extensble
Markup Language) and XHTML (Extensble HTML), incorporate mechanisms for “hinting” to

intermediate Adaptation Agents to help them adapt content delivery to arange of networks and devices.

The WAP (Wirdless Application Protocol) suite is astack of protocols designed specificaly for
delivering data and interactive services to the “smart cdllular phone”’ class of mobile devices [WAPI7].
Although the applicationlevel markup and scripting languages (WML and WML script) include festures
motivated by the limited capabilities of the intended client devices, the languages do not appear to
provide any functiondlity that directly facilitates the gpplication-level adaptation we mativate in this
retrogpective. It will be interesting to see whether the evolution of the WAP protocols will follow the
pattern of HTML, where application-level adaptation mechinery hasto be retrofitted after the protocols

have become entrenched.

5.8 Summary

The following table summarizes how each of the example systems fits the Adaptation Framework.

System Description ASA EM RM Network
TranSend Web accderaa MIME-typee Wirdessverti- N/A Compos-
tion through specificcom cd handoff noti- able/stackable us-
datatype- pressors fication affects ingHTTP
spexific lossy compression
compression aggressveness
Odyssey Application Wardens(de- Logof passve Viceroy Runs on arbitrary
aware adaptatior vice driver-like bandwidth ob- networks. API
by multiplegp- OSextensions) servations expressive enough
plicationsusing to handle re-
diverse data sources such as
types power and cache
space.
Conductor Combinesadap- Supportsarbi- Monitors net- Handles Uses TCPfrom
tationsacrossa trary adapta- work conditions planning point-to-point,
network for a tions and notifiessRM and re- provides end-to-
dataflow of changes. planningof end rdiability it-
adapter de- Hf.
ployment
Smiley Web prefeiching Prefetching Probesremote Handleslo- Runson arbitrary
maichedtonet- andwebpage Webserversto cdlinkand networks
work conditions rewriting. determinecu- cache
rent network
conditions
Coda Tricklere- Decideswhat Observesavail- N/A Specifics other
integration and how much ablelink band- than bandwidth
matcheslogre- to send and width to server and latency are
play tochannd keepstrack of transparent to
characteristics incomplete Coda
trangmissons
Environment Managementof Eventhandler Framework for N/A Not specific to
Aware API environmental which encodes monitoring the network attributes.
changeand gp- theresponseof dausif theent Supports other
plication leve the application vironment and condderations
reaction ddivering the such as power.
induced changes

to applications

23

6. The Adaptation Framework and the Structure of Adaptive Applications

Our framework distinguishes the functionality of specific components of an adaptive gpplication, and we
have argued that this decomposition captures abroad class of adaptive gpplications. This decomposition
aso provides the ability to decouple the various adaptation-related entities from each other. Certainly in
some cases tight coupling between entities can lead to a more efficient implementation; for example,
responding to an event by invoking aregistered upcall isfast and efficient and may not even cross an
address- space protection boundary. However, in cases where loose coupling provides acceptable

performance and sufficiently small overheed, it offers some important benefits:

1. Itdlowsapplicationsto be designed to function in either adaptive or non-adaptive environments,
depending on whether environmental monitoring informetion is available. This smplifies gopli-
cation development by avoiding the need for “hardwiring” the monitoring machinery directly

into the application.

2. It dlowsthe components to be designed as separate autonomous subsystems that are loosely
coupled and operate essentidly independently. For example, using multicast, an environment-
monitoring subsystem can be in a continuous-monitoring mode in which interested parties sub-
scribe to specific types of environment-change events and react to them, rather than using a

tighter coupling (such as the registering of upcalls) to support dynamic adaptation.

3. Thethird advantage derives directly from the first two: systems composed of autonomous,
loosdly- coupled modules are more robust, generaly less susceptible to cascading failure (be-
cause of the inherent fault isolation afforded by module autonomy), essier to maintain, and often

easer to deploy incrementaly than their more tightly coupled counterparts.

For example, some gpplicationsin our framework do not require the presence or functiondity of the

EM; they function correctly without it, but display better adaptive behavior when it isfunctioning. The

24

TranSend application goes a step further by decoupling the mechaniams used for communication
between the EM and the ASA’s. in TranSend, the EM is a separate process that multi casts network-
change events on awell-known multicast channd. The EM can function without TranSend (it does't
meatter that no oneis ligtening to a multicast transmisson) and vice versa (if no events are received,
TranSend continues to function with its current settings). Such techniques contributed to the “infrastruc-
ture-level” degree of robustness achieved in the scalable cluster-based server that hosted the second-
generdion TranSend prototype [FGC+97]. The decoupling made possible by a careful implementation
of our framework may be aworthwhile starting point for the design of future adaptive gpplications. We
consder it astrength of our framework that it accommodates both loosaly-coupled and tightly-coupled

implementations, as circumstances and needs may require.

7. Open Issues and Conclusions
Thisframework is merely a garting point for thinking about the genera characteridtics of software that

supports network adaptivity. Many important issues are clarified, but not solved, by this framework.

7.1 The Adaptation Framework and Active Networks
Active Networks [TW96] defines avery genera modd for programming the network. Initsfull

generdity, potentidly every network packet can carry code, and every network entity (including routers
and general computation nodes) can execute that code and maintain sate. In addition to network
adaptation such as we have described, ANs attempt to address a wide range of other tasksinvolving

computation in the network, such as packet filtering, encryption, and incremental protocol deployment.

Currently, the exact definition and architecture of Active Networks are topics of research. In many
cases, however, ongoing Active Network projects are producing software thet is likdly to fit wel into the
framework. Asthe research community defines the architectural components of an Active Network

more precisaly, we anticipate that architecture will map comfortably into the framework outlined here.

25

7.2 Interactions between adaptations at different levels.
Adaptation can occur a multiple levels, asit doesin the sample systems discussed. Some adaptations

relate to atering the behavior of an underlying protocol, some to dtering the behavior of an operating
system, some to dtering the behavior of an application. In some cases, different adaptations might be

goplied at different levels of the overdl system. How such adaptations would interact is far from clear.

Smilarly, the framework points out the possibilities of composing adaptations, even those at the same
level. Some systems, such as TranSend and Conductor, aready support some forms of composition, but
the framework points out many possible methods of composing adaptations. However, the methods
used to determine that compaosed adaptations produce the desired behavior, particularly when they are

being deployed and composed automatically, are unknown.

7.3 Breadth of applicability.
While this framework more than adequately describes the systems developed by the authors, and other

systems with which they are familiar, the modd is new, and has followed the development of these
adaptive systems rather than preceded them. Whether the framework contains sufficient generaity and
featuresto properly describe dl worthwhile adaptive software systems remains to be seen. Further
examination of the aternative methods being used throughout the research community and deeper

thought may further refine the framework.

The framework, asit stands, is not an architecture. No APIs have been defined that describe how data
and contral information flowsinto and out of AAs and their components. While the individud systems
discussed above dl map neetly into the framework, none of them could be seamlessy and effortlesdy
connected, as presumably they could be if they conformed to a single architecture. Conversion of the
framework into a true architecture would require tight specification of the APIs between its components

and vdidation by re-writing severd adaptive systems to conform to these specifications.

26

The OSl sevenlayer reference modd provides a ussful analogy to our framework. Like our modd, the
OSl reference modd is not an architecture but aframework. The OSl mode proposed a tremendoudy
ussful way to think about networking protocols. 1t alowed the community to discuss key issues and to
define specific architectures. It provided a decomposition and layered structure that accel erated
implementation congderably. Many systems violate the OSl modd, but those very violations are dl the
more understandable and vauable precisaly because we can place them in the context of a framework.
We believe that the adaptation framework outlined here can serve asimilar role in the increasingly

important field of network adaptation.

The framework outlined in this paper is primarily intended to ditill the common lessons learned from
severd successful network adaptation systems. The authors hope it will lead to more generd discussion

and study of the properties of network adaptation systems and the important features of such systems.

References
[AHKO97] Mark Allman, ChrisHayes, Hans Kruse, Shawn Ostermann, “ TCP Performance Over Satellite

| nternational Conference on Telecommunications Systems, 1997.

[BHAK95] Hari Balakrishnan, Srinivasan Seshan, Elan Amir, and Randy Katz, “Improving TCP/IP Performance

Over Wireless Networks,” Mobicom 95, Nov. 1995

[BMMM95] Charles Brooks, Murray S. Mazer, Scott Meeks, and Jim Miller, “ Application-Specific Proxy
Serversas HTTP Stream Transducers,” Fourth International World Wide Web Conference, November

1995,

[CFMB9g] Y atin Chawathe, Steve Fink, Steven McCanne, and Eric A. Brewer. A proxy architecture for
reliable multicast in heterogeneous environments. Proc. |FIP Middleware 98, Lake District, UK, Sept.

1998.

27

[FBA9G] Armando Fox, Steven D. Gribble, Eric A. Brewer and Elan Amir. Adapting to Network and Client
Variability viaOn-Demand Dynamic Distillation. Proc. Seventh Intl. Conference on Architectural Support

for Programming L anguages and Operating Systems (ASPLOS-VI1), Cambridge, MA, Oct. 1996.

[FGCB9g| Armando Fox, Steven D. Gribble, Y atin Chawathe and Eric A. Brewer. Adapting to Network and
Client Variation Using Active Proxies. Lessons and Perspectives. |EEE Personal Communications (invited

submission), August 1998.

[FGC+97] Armando Fox, Steve D. Gribble, Y atin Chawathe, Eric A. Brewer, and Paul Gauthier. Cluster-based
scalable network services. Proceedings of the Sixteenth Intl. Symposium on Operating Systems Principles

(SOSP-16), St-Malo, France, October 1997.

[FGG+9g] Armando Fox, lan Goldberg, Steven D. Gribble, David C. Lee, Anthony Polito, and Eric A. Brewer.
Experience With Top Gun Wingman, A Proxy-Based Graphical Web Browser for the USR PalmPilot. Proc.

IFIP Middleware 98, Lake District, UK, Sept. 1998.

[JK99] Zhimei Jiang and Leonard Kleinrock, “An Adaptive Pre-fetching Scheme,” to appear in Journal of Selected

Areasin Communications, 1999.

[KS95] Puneet Kumar and M. Satyanarayanan, “Flexible and Safe Resolution of File Conflicts,” Proceedings of the

1995 Winter Usenix Conference, January 1995.

[KS92] Jay Kistler and M. Satyanarayanan, “ Disconnected Operation in the Coda File System,” ACM Transactions

on Computers, Vol. 10, No. 1, Feb. 1992

[KS93] P. Kumar and M. Satyanarayanan, “Supporting Application-Specific Resolution in an Optimistically
Replicated File System,” Proceedings of the Fourth Workshop on Workstation Operating Systems, Napa,

CA, October 1993

[LHKR9g] MikalLiljeberg, Heikki Helin, Markku K ojo, Kimmo Raatikainen, “ Enhanced Servicesfor World-
Wide Web in Mobile WAN Environment,” University of Helsinki Computer Science Department Techni-

cal Report C-1996-28.

[MCS0g] A. Malet, J.D. Chung, J. M. Smith, “Operating System Support for Protocol Boosters,” HIPPARCH

Workshop, June 1997.

28

[MES95] Lily Mummert, Maria Ebling, M. Satyanarayanan, “ Exploiting Weak Connectivity for Mobile File

Access,” Symposium on Operating System Principles, December 1995.
[Met94] Metricom Inc. Ricochet wireless modem service. http://www.ricochet.net

[NSN+97] Brian Noble, M. Satyanarayanan, D. Narayanan, James Tilton, Jason Flinn, Kevin Walker, “Adgile

Application-Aware Adaptation for Mobility,” Symposium on Operating System Principles, Nov. 1997.

[RHR+97] Peter Reiher, John Heidemann, David Ratner, Gregory Skinner, and Gerald Popek, “Resolving File

Conflictsin the Ficus File System,” Proceedings of the 1994 Summer Usenix Conference, June 1994.

[SB98] Pradeep Sudame, B. R. Badrinath, “ Transformer Tunnels: A Framework for Providing Route-Specific

Adaptations,” Usenix Annual Technical Conference, June 1998.

[SKK+90] M. Satyanarayanan, James Kistler, Puneet Kumar, Maria Okasaki, Ellen Siegel, and David Steere,
“Coda: A Highly Available File System for a Distributed Workstation Environment,” |EEE Transactions

on Computers, Val. 39, No. 4, April 1990.

[SK97] Mark Stemm and Randy H. Katz. Vertical handoffsin wireless overlay networks. ACM Mabile

Networking (MONET) Special Issue on Mobile Networking in the Internet, Fall 1997.

[TK96] B. Tung and Leonard Kleinrock, “Using Finite State Automata to Produce Self-Optimization and Self

Control,” IEEE Transactions on Parallel and Distributed Systems, Vol. 7, No. 4, April 1996.

[TW96] David Tennenhouse and David Wetherall, “ Towards an Active Network Architecture,” Computer

Communications Review, Vol. 26, No. 2, April 1996.
[WAP97] Wireless Applications Forum home page and standards documents. http://www.wapforum.org

[YRPO9| Mark Y arvis, Peter Reiher, and Gerald Popek, “Conductor: A Framework for Distributed

Adaptation,” Proc. Seventh Workshop on Hot Topicsin Operating Systems (HotOS-VIl1), March 1999.

Biographies
B. Badrinath received his Ph.D from Univergity of Massachusetts Amherst in 1989. He has since been
on the faculty in the Computer Science Department at Rutgers University, where he is an Associate

Professor. His research interests are in mobile and wirdess computing, particularly network design

29

issues for supporting large scale mobile and wireless nodes(e.g., sensor networks, smart spaces,

dataspaces).

Armando Fox joined the Stanford faculty as an Assistant Professor in January 1999, after getting his
Ph.D. from UC Berkeley as aresearcher in the Daeda us wirdless and mobile computing project. His
research interests include the design of robust Internet- scale software infrastructure, particularly as it
relates to the support of mobile and ubiquitous computing, and user interface issues related to mobile
and ubiquitous computing. In previous lives, Armando received a BSEE from M.I.T. and an MSEE
from the Univeraty of lllinois and worked as a CPU architect at Intel Corp. He can be reached at
fox@cs.ganford.edu. Heisaso an ACM member and afounder of ProxiNet, Inc. (now adivison of
Puma Technology), which is commercidizing thin client mobile computing technology developed a UC

Berkeley.

Leonard Kleinrock is known asthe inventor of Internet technology, having created the basic principles
of packet switching (the technology underpinning the Internet) while a graduate student at MIT. Dr.
Kleinrock received his Ph.D. from MIT in 1963 and has served as a professor of computer science at the
Universty of Cdifornia, Los Angdes, sncethen. He received his BEE degree from CCNY in 1957

(and an Honorary Doctor of Science from CCNY in 1997). Heisaco-founder of Linkabit, and dso
founder and chairman of Nomadix, Inc. and of Technology Transfer Indtitute, both hi-tech firms located
in Santa Monica, California. Dr. Kleinrock has published more than 200 papers and authored six books
on awide array of subjectsincluding packet switching networks, packet radio networks, local area

networks, broadband networks and gigabit networks.

Dr. Kleinrock isamember of the Nationa Academy of Engineering, an |EEE fdlow and afounding
member of the Computer Science and Telecommunications Board of the National Research Council.

Among his many honors, heisthe recipient of the CCNY Townsend Harris Medd, the CCNY Electrica

Engineering Award, the Marconi Award, the L.M. Ericsson Prize, the UCLA Outstanding Teacher
Award, the Lanchester Prize, the ACM SIGCOMM Award, the Sigma Xi Monie Ferst Award, and the

|EEE Harry Goode Award.

Gerald Popek received his Ph.D. from Harvard University in 1973. He has been amember of the
faculty of the UCLA Computer Science Department since 1973. He founded the L ocus Computing
Corporation in 1983, and served asfird asits Presdent and CEO, later asits Chairman, until it was
acquired by Platinum technologies, inc. in 1995. He served as Platinum’s CTO until 1999. Heisnow
CTO of Carsdirect.com. Dr. Popek’s research has concerned security, operating systems, distributed

systems, and databases. He is amember of the ACM.

Peter Reiher recaived hisPh.D. from UCLA in 1987. Heworked a JPL for five years as principa

designer of the Time Warp Operating System. He returned to UCLA in 1993, where heis an Adjunct
Associate Professor. Dr. Relher’ s research interests include distributed systems, adaptive technologies
for networking, security, data replication, and parallel discrete event amulation. He is amember of the

ACM.

M. Satyanarayanan isan experimenta computer scientist who has pioneered research in the fidd of
mobile information access. An outcome of thiswork isthe Coda File System, which provides
application-trangparent support for disconnected and weakly-connected operation. Key ideas from Coda
have been incorporated by Microsoft into a forthcoming release of the Windows NT file system. More
recently, Satyanarayanan and his research group have been working on application-aware adaptation, a
more genera approach to mobile information access. This concept is being explored in the context of a
new platform, Odyssey. Prior to hiswork on Coda and Odyssey, Satyanarayanan was a principa

architect and implementer of the Andrew File System, alocation-trangparent didtributed Unix file

31

system that addressed issues of scale and security. Later versons of this system have been commercial-

ized and incorporated into the Open Software Foundation's DCE offering.

Satyanarayanan isthe Carnegie Group Professor of Computer Science at Carnegie Méelon Universty.
He received the PhD in Computer Science from Carnegie Mdlon, after Bachelor's and Master's degrees
from the Indian Ingtitute of Technology, Madras. He has been a consultant and advisor to many

industrid and governmenta organizations.

32

