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Abstract— Most Internet services (e-commerce, search engines,
etc.) suffer faults. Quickly detecting these faults can be the
largest bottleneck in improving availability of the system. We
present Pinpoint, a methodology for automating fault detection
in Internet services by (1) observing low-level, internal structural
behaviors of the service; (2) modeling the majority behavior of the
system as correct; and (3) detecting anomalies in these behaviors
as possible symptoms of failures. Without requiring any a priori
application-specific information, Pinpoint correctly detected 89–
96% of major failures in our experiments, as compared with
20–70% detected by current application-generic techniques.

Index Terms— Internet services, application-level failures,
anomaly detection

I. INTRODUCTION

A significant part of recovery time (and therefore avail-
ability) is the time required to detect and localize service
failures. A 2003 study by Business Internet Group of San
Francisco (BIG-SF) [1] found that of the 40 top-performing
web sites (as identified by KeyNote Systems [2]), 72% had
suffered user-visible failures in common functionality, such as
items not being added to a shopping cart or an error message
being displayed. These failures do not usually disable the
whole site, but instead cause brown-outs, where part of a
site’s functionality is disabled or only some users are unable
to access the site.

Many of these failures are application-level failures that
change the user-visible functionality of a service, but do not
cause obvious lower-level failures detectable by service opera-
tors. Our conversations with Internet service operators confirm
that detecting these failures is a significant problem: Tellme
Networks estimates that 75% of the time they spend recovering
from application-level failures is spent just detecting them [3].
Other sites we spoke with agreed that application-level failures
can sometimes take days to detect, though they are repaired
quickly once found. This situation has a serious effect on the
overall reliability of Internet services: a study of three sites
found that earlier detection might have mitigated or avoided
65% of reported user-visible failures [4]. Fast detection of
these failures is therefore a key problem in improving Internet
service availability.

We present Pinpoint, a prototype monitor for quickly de-
tecting failures in component-based Internet services, without
requiring a priori information about the correct behavior of
an application. Pinpoint’s insight is that failures that affect a
system’s user-visible behavior are likely to also affect a sys-
tem’s internally visible behaviors. Monitoring those behaviors
that are closely tied to service functionality, Pinpoint develops

a model of the normal patterns of behavior inside a system.
When these patterns change, Pinpoint has high confidence
that the service’s functionality has also changed, indicating
a possible failure.

Specifically, Pinpoint monitors inter-component interactions
and the shapes of paths (traces of client requests that traverse
several components) to quickly build a dynamic and self-
adapting model of the “normal” behavior of the system. Once
it notices an anomaly, Pinpoint correlates it to its probable
cause in the system, a set of likely faulty components.

We recognize that the most rigorous test of Pinpoint’s
usefulness is through validation in real Internet service en-
vironments, and are currently deploying Pinpoint in such
services for exactly this reason. In this paper, however, we take
advantage of a controlled testbed environment to test Pinpoint
with a different kind of rigour: by methodically injecting
a wide-variety of failures, including source-code bugs, Java
exceptions and others, into all the componentes of several
applications running on our testbed cluster, we evaluate how
well Pinpoint discovers failures and characterize Pinpoint’s
strengths and weaknesses.

A. Application-Level Failures

We define an application-level failure as a failure whose
only obvious symptoms are changes in the semantic func-
tionality of the system. As further elucidation, let us model
a simple system as a layered stack of software, where the
lowest layer is the operating system, the highest layer is
the application, with various other layers in between (e.g.,
libraries, middleware software, standard protocols, etc.). In
this model, an application-level failure manifests solely in the
application layer, though the cause of the failure may be in
another layer. In particular, an application-level failure is not
a fail-stop failure, as this would generally cause several layers
of the software stack to stop.

Figure 1 shows an example of application-level failure that
the authors have encountered at one web service. Although
this page should be displaying a complete flight itinerary,
it shows no flight details at all. Instead, it shows only an
incorrect confirmation date. While the authors are not privy to
the detailed cause of this failure, it appears that no symptoms
are manifest below the application-layer: the site responds to
pings, HTTP requests, and returns valid HTML.

B. Current Monitoring Techniques

To be most useful in a real Internet service, a monitoring
technique should have the following properties:
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Fig. 1. Instead of a complete itinerary, this screenshot of an airline site
shows no flight details at all. A naive fault monitor, however, would find no
problems: the site responds to pings, HTTP requests, and returns valid HTML.

High accuracy and coverage: A monitoring service should
correctly detect and localize a broad range of failures. Ideally,
it would catch never-before-seen failures anywhere in the
system. In addition, a monitor should be able to report what
part of the system is causing the failure.
Few false-alarms: The benefit provided by early detection of
true faults should be greater than the effort and cost to respond
to false-alarms.
Deployable and maintainable: A monitoring system must
be easy to develop and maintain, even as the monitored
application evolves.

From our discussions with Internet service operators, we
find that existing detection methods fall into three categories.
First, low-level monitors are machine and protocol tests, such
as heartbeats, pings, and HTTP error code monitors. They are
easily deployed and require few modifications as the service
develops; but these low-level monitors miss high-level failures,
such as broken application logic or interface problems.

Secondly, application-specific monitors, such as automatic
test suites, can catch high-level failures in tested functionality.
However, these monitors usually cannot exercise all interesting
combinations of functionality (consider, for example, all the
kinds of coupons, sales and other discounts at a typical e-
commerce site). More importantly, these monitors must be
custom-built and kept up-to-date as the application changes,
otherwise the monitor will both miss real failures and cause
false-alarms. For these reasons, neither the sites that we have
spoken with, nor those studied in [4] make extensive use of
these monitors.

Thirdly, user-activity monitors, watch simple statistics about
the gross behavior of users and compare them to historical
trends. Such a monitor might track the searches per second or
orders per minute at a site. These monitors are generally easy
to deploy and maintain, and at a site with many users, can
detect a broad range of failures that affect the given statistic,
though they do not often give much more than an indication
that something might have gone wrong. Since these monitors
are watching user behavior, they can generate false alarms
due to external events, such as holidays or disasters. Finally,
customer service complaints are the catch-all fault detectors.

C. Contributions

We introduced path-analysis for localizing failures in Inter-
net services in [5] and in [3], [6] broadened our path-analysis
techniques to show how this coarse-grained visibility into a
system can aid fault management, fault impact analysis, and
evolution management. The contributions of this paper are as
follows:

1) We identify two kinds of system behaviors—path-shapes
and component-interactions—that are easy to observe
with application-generic instrumentation and serve as
reliable indicators of changes in high-level application
behavior.

2) We show how existing statistical analysis and machine
learning techniques for anomaly detection and clas-
sification can be used to monitor these behaviors to
discover failures without a priori knowledge of the
correct behavior or configuration of the application.

3) We evaluate these techniques by integrating Pinpoint
with a popular middleware framework (J2EE) for build-
ing Internet services. We inject a variety of failures into
several J2EE applications, and measure how well and
how quickly Pinpoint detects and localizes the faults.
We also test Pinpoint’s susceptibility to false positives by
performing a set of common changes, such as a software
upgrade.

Pinpoint does not attempt to detect problems before they
happen. Rather, we focus on detecting a failure as quickly as
possible after it occurs, to keep it from affecting more users
and to prevent cascading faults. Also, Pinpoint attempts to
notice where a failure is occuring in the system, and does not
attempt to explain why it might be failing. Combined with a
simple generic recovery mechanism, such as microreboots [7],
simply knowing the location of a fault is often sufficient for
fast recovery.

Section II describes Pinpoint’s approach to detecting and
localizing anomalies, and the low-level behaviors that are
monitored. Section III explains in detail the algorithms and
data structures used to detect anomalies in each of these
behaviors. In Section IV, we describe an implementation
of Pinpoint and our testbed environment. In Section V, we
evaluate Pinpoint’s effectiveness at discovering failures, the
time to detect failures, and its resilience to false-alarms in the
face of normal changes in behavior. We conclude by discussing
related work and future directions.

II. PINPOINT APPROACH

With Pinpoint, we attempt to combine the easy deployability
of low-level monitors with the higher-level monitors’ ability
to detect application-level faults. This section describes our
assumptions and our approach.

A. Target System

Pinpoint makes the following assumptions about the system
under observation and its workload:

1) Component-based: the software is composed of intercon-
nected modules (components) with well-defined narrow
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interfaces. These may be software objects, subsystems
(e.g., a relational database may be considered a single,
large black-box component), or physical node bound-
aries (e.g., a single machine running one of the Web
server front-ends to an Internet service).

2) Request-reply: a single interaction with the system is
relatively short-lived, and its processing can be broken
down as a path, a tree of the names of components that
participate in the servicing of that request.

3) High volume of largely independent requests (e.g., from
different users): combining these allows us to appeal
to “law of large numbers” arguments justifying the
application of statistical techniques. The high request
volume ensures that most of the system’s common code
paths are exercised in a relatively short time.

In a typical large Internet service, (1) arises from the ser-
vice being written using one of several standard component
frameworks, such as .NET or J2EE, and from the clustered
and/or tiered architecture [8] of many such services. (2) arises
from the combination of using a component-based framework
and HTTP’s request-reply nature. (3) arises because of the
combination of large numbers of (presumably independent)
end users and high-concurrency design within the servers
themselves.

B. Observation, Detection, Localization

The Pinpoint approach to detecting and localizing anomalies
is a three-stage process of observing the system, learning the
patterns in its behavior, and looking for anomalies in those
behaviors.

1) Observation: We capture the runtime path of each
request served by the system: an ordered set of coarse-
grained components, resources, and control-flow used
to service the request. From these paths, we extract two
specific low-level behaviors likely to reflect high-level
functionality: component interactions and path shapes.

2) Learning: We build a reference model of the normal
behavior of an application with respect to component
interactions and path shapes, under the assumption that
most of the system is working correctly most of the time.

3) Detection: We analyze the current behavior of the
system, and search for anomalies with respect to our
learned reference model.

During the observation phase, we capture the runtime paths
of requests by instrumenting the middleware framework used
to build the Internet service. As these middleware frameworks
wrap all the application’s component and manage their invoca-
tions, instrumenting the middleware gives us the visibility we
require. And by instrumenting a standard middleware, such as
J2EE or .NET, we have the ability to observe any application
built atop it.

Before analyzing these observations, we “bin” our runtime
paths by their request type. By analyzing each type of request
separately. we aim to improve resilience against changes in the
workload mix presented to the Internet service. The degree
of resilience is determined by the quality of the binning
function. In our testbed, we use the URL of a request; a

more sophisticated classifier might also use URL arguments,
cookies, etc.

In the learning phase, Pinpoint builds reference models
of normal behavior under the assumption that most of the
time, most of the system is working correctly. Note that this
assumption does not require the system to be completely
fault-free. Quickly and dynamically building accurate and
complete models depends on the assumption that there is a
high traffic and a large number of independent requests to
the service: a large fraction of the service’s code base and
functionality is exercised in a relatively short amount of time.
This assumption does not hold for some other applications
of anomaly detection, such as intrusion detection in multi-
purpose or lightly-used servers, in which it is not reasonable
to assume that we can observe a large volume of independent
requests.

We learn a historical reference model to look for anomalies
in components relative to their past behavior, and a peer
reference model to look for anomalies relative to the current
behaviors of a component’s replicated peers. These two models
complement each other: a historical analysis can detect acute
failures, but not those that have always existed in the system;
peer analysis, which only works for components that are
replicated, is resilient to external variations that affect all
peers equally (such as workload changes), but a correlated
failure that affects all peers equally will be missed. Steady-
state failure conditions affecting the whole system would not
be detected by either type of analysis

To detect failures, we compare the current behavior of
each component to the learned reference model. The anomaly
detection function itself is model-specific. We describe both
the models and the anomaly detection function in detail in the
next section.

Once a failure has been detected, a separate policy agent is
responsible for deciding how to respond to discovered failures.
Discussion and analysis of how to react to possible failures is
outside the scope of this paper, though we discuss one policy
of rebooting failed components in [9].

III. ALGORITHMS AND DATA STRUCTURES

From our observations, we extract two behaviors: path
shapes and component interactions. The techniques we use
to model these behaviors and detect anomalies are detailed in
the rest of this section.

A. Modeling Component Interactions

The first low-level behavior that we analyze is component
interactions. Specifically, we model the interactions between
an instance of a component and each class of components in
the system. The intuition behind looking for anomalies here
is that a change in a component’s interactions with the rest of
the system is likely to indicate that the functional behavior of
that component is also changing.

If A and B are both classes of components, and ai is an
instance of A, we measure the interactions between ai and
any instance in B. We do not analyze interactions between
two individual instances because in many systems this level
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1 9.41 Catal ogEJB
2 1.09 Shopp ingCa rtEJB
3 0.34 Shopp ingCo ntroll erEJB
4 0.12 JspSe rvlet
5 0.02 MainS ervle t

Fig. 2. This list shows the top five χ2 goodness-of-fit scores of components
after injecting an anomaly into CatalogEJB. The scores are normalized 1 is
the threshold for statistical significance α. CatalogEJB, the most anomalous,
is significantly more anomalous than other components.

of interaction is not identical across instances of a component.
For example, some systems use a notion of affinity, where a
component a1 will only communicate with b1, a2 with b2, etc.

We represent these interactions of an instance ai as a set
of weighted links, where each link represents the interaction
between a component instance and a class of components, and
is weighted by the proportion of runtime paths that enter or
leave a component a through each interaction.

We generate our historical models of the component inter-
actions by averaging the weights of links through them over
time. Our peer model is generated by averaging the current
behaviors of replicated peers in the system.

We detect anomalies by measuring the deviation between a
single component’s current behavior and our reference model
using the χ2 test of goodness-of-fit:

Q =

k∑

j=1

(Nj − wj)
2

wj

(1)

where Nj is the number of times link j is traversed in
our component instance’s behavior; and wj is the expected
number of traversals of the link according to the weights in our
reference model. Q is our confidence that the normal behavior
and observed behavior are based on the same underlying
probability distribution, regardless of what that distribution
may be. The higher the value of Q, the less likely it is that
the same process generated both the normal behavior and the
component instance’s behavior.

We use the χ2 distribution with k − 1 degrees of freedom,
where k is the number of links in and out of a component, and
we compare Q to an anomaly threshold based on our desired
level of significance α , where higher values of α are more
sensitive to failures but more prone to false-positives. In our
experiments, we use a level of significance α = 0.005. Figure
2 shows an example output from one of our fault detection
runs.

B. PCFGs Model Path Shapes

The shape of a path is the ordered set of logical soft-
ware components (as opposed to instances of components on
specific machines) used to service a client request [6]. We
represent the shape of a path in a call-tree-like structure, except
that each node in the tree is a component rather than a call site
(i.e., calls that do not cross component boundaries are hidden).

Path shapes give a different view of the system than
component interactions. Component interactions look at one
component’s behavior across many client requests, whereas

R1,1 : S → A p = 1.0 R3,2 : B → C p = 0.2
R2,1 : A → B p = 0.66 R3,3 : B → CB p = 0.2
R2,2 : A → BB p = 0.33 R3,4 : B → $ p = 0.2
R3,1 : B → CC p = 0.4 R4,1 : C → $ p = 1.0

Fig. 3. Top left: a set of three inter-component call paths through a system
consisting of three component types (A, B, C). Top right: Call paths 1 and
2 have the same shape, while 3 is different. Bottom: PCFG corresponding to
this collection of paths. S is the start symbol, $ is the end symbol, and A, B,
C are the symbols of the grammar.

a path shape gives the orthogonal view, inspecting a single
request’s interactions with many components. As an example
of a failure detectable by path shape analysis, but not by
component interactions, consider an occasional error that
affects only a few requests out of many. Since few requests are
affected, it might not significantly change the weights of the
links in a component interaction model, but path shape analysis
would detect anomalies in the individual paths. As a converse
example, it is normal for a password-verification component to
occasionally reject login attempts and path-shape analysis of a
request that ended in a login failure would not be considered
anomalous. However, component interaction analysis would
be able to detect an anomaly if the component was rejecting
more than the usual proportion of login attempts.

We model a set of path shapes as a probabilistic context-free
grammar (PCFG) [10], a structure used in natural language to
calculate the probabilities of different parses of a sentence. A
PCFG consists of a set of grammar rules, Rij : N i → ζj ,
where N i is a symbol in the grammar and ζj is a sequence
of zero or more symbols in the grammar. Each grammar rule
is annotated with a probability P(Rij), such that ∀iΣjRij =
1. The probability of a sentence occurring in the language
represented by that grammar is the sum of the probabilities of
all the legal parsings of that sentence.

In our analysis in Pinpoint, we treat each path shape as
the parse tree of a sentence in a hypothetical grammar, using
the component calls made in the path shapes to assign the
probabilities to each production rule in the PCFG. Figure 3
shows an example of a trivial set of path shapes and the
corresponding PCFG.

To learn a PCFG from a set of sample path shapes, we
iterate over every branching point in the component call trees
represented by the set of sample paths. For every branch in
a path shape where a component N i makes a set of calls to
components ζj , we increment two counters. The first counter,
cNi is associated with the component N i and tracks the
number of times this component has been seen across our
sample set of path shapes. The second counter, cNi→ζj is
associated with the grammar rule N i → ζj , and tracks the
number of times N i has called ζj . Once we have processed
all the path shapes in our sample, we calculate P(Rij) for each
Rij as cNi→ζj /cNi .

To build a historical reference model, we build a PCFG
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Fig. 4. The left graph is a histogram of request scores during normal behavior.
The right shows the scores when we cause part of the system to misbehave.
Some requests fail as a result, and are clearly separated from the successful
requests by our scoring algorithm. This data is taken from our experiments
with the Petstore 1.3, described in Section IV.

based on a set of path shapes observed in the past, and our
peer reference model from the path shapes observed in the last
N minutes. In both cases, we want to be sure that our models
are based on enough observations that we capture most of the
different behaviors in the system.

To determine whether a subsequently-observed path shape
is anomalous, once we have built a reference model, we start
at the root of the tree of component calls in a path shape and
compare each transition to its corresponding rule Rij in our
PCFG. The total “anomaly” score for path shape is:

∑

∀Rij∈t

min(0, P (Rij) − 1/ni) (2)

where t is the path shape being tested, and n is the total
number of rules in our PCFG beginning at N i. The simple
intuition behind this scoring function is that we are measuring
the difference between the probability of the observed transi-
tion, and the expected probability of the transition at this point.
We use this difference as the basis for our score because in
these systems, we have found that low probability transitions
are not necessarily anomalous. Consider a PCFG with 100
equally probable rules beginning with N iand probability 0.005
each, and 1 rule with probability 0.5. Rather than penalize
the low-probability 0.005 transitions, this scoring mechanism
will calculate that they deviate very little from the expected
probability of 1/101. Figure 4 shows that this scoring function
does a good job of separating normal paths from faulty paths.

After scoring our path shapes, if more than αn paths
score above the (1− n)th percentile of our reference model’s
distribution, we mark these paths as anomalous. For example,
any path with a score higher than any we have seen before
(i.e., above the 100thpercentile) will be marked as anomalous.
Similarly, if α = 5and 1% of paths suddenly score higher
than our historical 99.9thpercentile, we will mark these 1%
of paths as anomalous, since 0.01 > 5 ∗ (1 − 0.999). The α
coefficient allows us some degree of control over the ratio of
false-positives to true-positives. All other things being equal,
we would expect to have less than 1

α
of our anomalous paths

to be false-positives when a failure occurs.

C. Decision Trees Localize Path Shape Anomalies

While detecting possibly faulty requests can be important
in its own right, it is often more useful to discover what

Fig. 5. A decision-tree learned for classifying faulty paths in one of
our experiments. Here we injected a fault into TheInventory component on
one machine in a cluster. The decision tree learning algorithm chose the
“name=TheInventory” as the most important classifier, and the machine’s ip
address as the second.

components in the system may be failing. Once we have
detected anomalous path shapes using a PCFG analysis, we
can attempt a second stage of analysis to localize the problem
to specific components by searching for a correlation between
anomalies and the features of our paths. If we find a correlation
then we say that these components are a potential cause of the
failure. Of course, correlation does not imply causality, but it
does help us narrow down our list of possible causes.

To find this correlation, we learn a decision tree to classify
(predict) whether a path shape is a success or failure based
on its associated features. These features correspond to the
path information that Pinpoint collects, such as the names of
EJB’s, IP addresses of server replcias in the cluster, etc. Of
course, we already know the success of the requests we are
analyzing—what interests us is the structure of the learned
decision tree; looking at which components are used as tests
within the decision tree function tells us which components
are correlated with request failures. In our experiments, we
use the ID3 algorithm [11] for learning a decision tree, though
recent work suggests that C4.5 decision trees might perform
better [12].

The training set for our decision-tree learning is the set of
paths classified as normal or anomalous by our PCFG detector.
The input to our target function is a path, and the output of
the function is whether or not the path is anomalous. Our
goal is to build a decision tree that approximates our observed
anomalies based on the components and resources used by the
path.

Once we have built a decision tree, we convert it to an
equivalent set of rules by generating a rule for each path from
the root of the tree to a leaf. We rank each of these rules
based on the number of paths that they correctly classify as
anomalous. From these rules, we extract the hardware and
software components that are correlated with failures.

Since anomalies detected by our component-interaction
analysis already point to specific faulty components, we do not
usually need to localize them further. However, if we notice
anomalies in many components at once, it may be worthwhile
to “localize” the problem to some common attribute or feature
of the failing components.

Note that decision trees can represent both disjunctive and
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conjunctive hypotheses, meaning that they have the potential
to learn hypotheses that describe multiple independent faults,
as well as localize failures based on multiple attributes of a
path rather than just one, i.e., caused by interactions of sets
of components rather than by indvidual components. More
interestingly, it allows us to avoid specifying a priori the exact
fault boundaries in the system. With the caveat that this will
require more observations to make a statistically significant
correlation, we can allow the decision tree to choose to localize
to a class of components, a particular version of a component,
all components running on a specific machine, etc, rather than
stating before-hand that we want to localize to a particular
instance of a component.

IV. EXPERIMENTAL SETUP AND METHODOLOGY

The goal of our experiments is to characterize Pinpoint’s
capabilities (detection rate, time to detection, and resilience
to false alarms) in the context of a realistic Internet service
environment, and to compare these capabilities against current
techniques for failure detection.

The core of Pinpoint is a plugin-based analysis engine.
Though we do not describe this prototype in detail, let it suffice
that we have created plugins corresponding to the anomaly-
detection and localization algorithms described in Section III.

In this section, we describe the setup of our small testbed
platform. We have instrumented a popular middleware plat-
form to gather the behaviors we observe, deployed several
applications atop our platform, and injected a variety of faults
and errors to test the detection capability of Pinpoint. Though
our testbed is not perfect, notably because of its small size,
we have attempted to make it as realistic as possible.

A. Instrumentation

We instrumented the JBoss open-source implementation of
the J2EE middleware standard which provides a standard
runtime enironment for three-tier enterprise applications [13],
[14]. Figure 6 illustrates this architecture. In the presentation
or web server tier, our instrumentation captures the URL and
other details of an incoming HTTP request, and also collects
the invocations and returns for used JSP pages, JSP tags and
servlets1. In the application tier, which manages and runs the
Enterprise Java Bean modules that make up the core of the
application, we capture calls to the naming directory (used by
components to find each other) and the invocation and return
data for each call to an EJB. Finally, we capture all the SQL
queries sent to the database tier by instrumenting JBoss’s Java
Database Connection (JDBC) wrappers.

Whenever we observe an event, we capture six pieces of
information: (1) a unique ID identifying the end-user request
that triggered this action; (2) an event number, used to order
events within a request; (3) whether the observed event is a
component call or return; (4) a description of the component
being used in the event (e.g., software name, IP address, etc);
(5) timestamp; (6) any event-specific details, such as the SQL

1Java Server Pages (JSP) provide a server-side scripting capability for
creating dynamic web content.

Fig. 6. J2EE provides a three-tiered architecture for building applications.

query string. These observations are reported asynchronously
across the service, and gathered at a central logging and
analysis machine. We use the unique request IDs and event
numbers to recreate the path that each request took through
the system.

Our instrumentation is spread across several sites within
the J2EE code. Each site instruments one type of component
(EJB,servlet,etc.) and required changes to only 1–3 files. Each
instrumentation site required 1-2 days of graduate student time
to implement and debug. In our instrumentation, we make ob-
servations asynchronously, and drop observations rather than
hurt the performance of the system. On a single-node system,
our unoptimized implementation can maintain full instrumen-
tation without dropping observations at a steady state of 75
clients, and can tolerate bursts of up to 300 clients for minutes
at a time (with subsequent queuing delays). The majority of
our performance costs come from our use of Java serialization
as the basis of our network transfer protocol. However, the
deployment of commercial instrumentation packages such as
Integritea on large sites such as Priceline.com suggests that this
relatively coarse-granularity of instrumentation is practical if
some engineering effort is focused on the implementation [3],
[15].

B. Applications and workloads

We deployed three different applications in our testbed
platform:
Petstore 1.1 is Sun’s sample J2EE application that simulates
an e-commerce web site (storefront, shopping cart, purchase,
tracking, etc.). It consists of 12 application components (EJBs
and servlets), 233 Java files, and about 11K lines of code, and
stores its data in a Cloudscape database. Its primary advantage
is that we have been able to modify the applciation to distribute
its presentation and business logic across a cluster of machines.
Petstore 1.3 is a significantly rearchitected version of Sun’s
initial application. This version includes a suite of applications
for order-processing and supply-chain management, and is
made of 47 components, 310 files, and 10K lines of code.
Because of its new architecture, we were unable to cluster
Petstore 1.3, but its increased functionality makes it a useful
additional application.
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RUBiS is an auction web site, developed at Rice University
for experimenting with different design patterns for J2EE [16].
RUBiS contains over 500 Java files and over 25k lines of code.
More relevant for our purposes, RUBiS has 21 application
components and several servlets.

While RUBiS comes with a custom load generator, we
built our own HTTP load generator for use with our Petstore
applications. The Petstore workloads presented by our load
generator simulates traces of several parallel, distinct user
sessions with each session running in its own client thread.
A session consists of a user entering a site, performing
various operations such as browsing or purchasing items, and
then leaving the site. We choose session traces so that the
overall load the service fully exercises the components and
functionality of the site. If a client thread detects an HTTP
error, it retries the request. If the request continues to return
errors, the client quits the trace and begins the session again.
The traces are designed to take different routes through the
web service, such that a failure in a single part of the web
service will not artifically block all the traces early in their
life cycle.

While our synthetic workload is very regular, our discus-
sions with multiple large Internet services indicate that this
regularity is realistic. One site reported that their aggregate
user behavior at any time is generally within 1-2% of the
behavior at the same time in the previous week, with the
exception of major events such as holidays or disasters.

When we deploy these applications, we run our observation
collector, the application, the database, and the load generator
on separate machines. Our clustered version of Petstore 1.1
runs with one front-end node running the code to handle
presentation, and three application-logic nodes.

C. Fault and Error Load

The goal of Pinpoint is to detect application-level failures, as
described in Section I-A. Since we detect failures by looking
for changes in application behavior, we have tried to choose
fault and error loads which will cause a variety of different
reactions in an application 2. We believe one of the primary
factors that determines how an application will react to a
problem is whether the system was designed to handle the
failure or not. Thus, our injected faults and errors include those
that a programmer building a system should expect, might
expect, and likely would not expect.

To inform our choice in fault and error loads, we surveyed
studies of failures in deployed systems as well as the faults
injected by other researchers in their experiments [4], [18]–
[21]. While some experiments focus on a range of byzantine
faults, we found that most of the faults injected concentrated
on problems that caused program crashes and other obvious

2By generally accepted definition [17], failures occur when a service
deviates from its correct behavior, for some definition of correctness. An
error is the corrupt system state that directly caused the failure. A fault is the
underlying cause of the system corruption. In our experiments, we both inject
faults (such as source code bugs) and errors (such as directly throwing a Java
exception). In the rest of this paper, we use the “fault injection” to include
both fault and error injection.

failures, as opposed to triggering only application-level fail-
ures.
Java exceptions: Because Java coerces many different kinds
of failures, from I/O errors to programmer errors, to manifest
as exceptions, injecting exceptions is an appropriate method
of testing an application’s response to real faults. To test
an application’s response to both anticipated and possibly
unexpected faults, we inject both exceptions that are declared
in component interfaces and undeclared runtime exceptions.
Note that both kinds of exceptions can sometimes be normal
and other times be signs of serious failures (we discuss this
further in the Section IV-D.
Naming Directory Corruption: To simulate some kinds of
configuration errors, such as mislabeled components in a
deployment descriptor, we selectively delete entries from the
Java Naming Directory server (JNDI).
Omission errors: To inject this error, we intercept a method
call and simply omit it. If the function should have returned a
value, we return 0 or a null value. While omission errors are
not the most realistic of the failures we inject, they do have
similarities to some logic bugs that would cause components
to not call others; and to failures that cause message drops or
rejections. Moreover, omission errors are unexpected errors,
and how well Pinpoint detects these errors may give us insights
into how well other unexpected faults will be detected.
Overload: To simulate failures due to the system overloads of
a flash-crowd or peak loads, we adjusted our load generators
to overload our testbed. In our system, overloads manfiested
as an overloaded database, where the application tier would
receive timeouts or errors when querying the database.
Source code bug injection: Even simple programming bugs
remain uncaught and cause problems in real software [22],
[23], so introducing them can be a useful method of simulating
faults due to software bugs [20].

There are several types of failures that we explicitly decided
not to inject. First, we do not inject low-level hardware or OS
faults, such as CPU register bit-flips, memory corruptions, and
IO errors because, empirically, these faults do not commonly
manifest as application-level failures that would otherwise go
unnoticed [7], but either cause easy-to-detect process crashes
or are coerced to manifest as exceptions by the Java virtual
machine in our testbed.

We expect that exceptions and omissions are extremely
likely to effect the structural behavior of an application, while
source code bugs may or may not cause changes in the
application structure. By injecting this range of faults, we
test both whether our algorithms detect anomalies when the
application’s structural behavior changes, and whether more
subtle faults that cause user-visible errors are also likely to
change the application’s structural behavior.

Together, these injected faults cause a variety of errors.
As an example of a mild failure, faults injected into the
InventoryEJB component of Petstore 1.1 are masked by the
application, such that the only user-visible effect is that items
are perpetually “out of stock.” At the other end of the spec-
trum, injecting an exception into the ShoppingClientController
component in Petstore 1.3 prevents the user from seeing the
website at all, and instead displays an internal server error for
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all requests.
In our experiments, we concentrate on faults that cause user-

visible errors. We verify this in our experiments by modify-
ing our load generator to verify all the HTML output with
MD5 hashes from fault-free runs. To make this verification
feasible, we force our dynamic applications to produce mostly
deterministic output by resetting all application state between
experiments and running a deterministic workload. Any re-
maining non-deterministic output, such as order numbers, are
canonicalized before hashing.

Even though we are in control of the fault injection, it is
not trivial to determine which client requests in an experiment
failed. Component interactions and corrupted state or resources
can all lead to cascading failures. As our ground-truth com-
parison, we mark a request as having failed if (1) we directly
injected a fault into it, (2) it causes an HTTP error, or (3) its
HTML output fails our MD5 hash.

We classify the faults we inject into two categories, based
on their impact: A major fault affects more than 1% of the
requests in an experiment, while a minor fault effects less than
1% of the requests.

No fault injection scheme can accurately mimic the variety
and affects of failures that occur in the real world. However,
given the number and breadth of faults we have injected
into each of our three applications we are confident that our
experiments capture a wide range of realistic fault behaviors.

D. Comparison Monitors

To better evaluate Pinpoint’s ability to detect failures, we
implemented several types of monitors for comparison.

Low-level Monitors: Our own load generator doubles as an
HTTP monitor and an HTML monitor. It scans the HTML
content being returned to users for obvious signs of errors
and exceptions. In our case, whether the keywords “error”,
and “exception” appear in the HTML text.

Since we are purposefully injecting only application-
failures, we did not implement a low-level ping or heartbeat
monitors. As none of our injected faults cause our servers to
crash or hang, we can assume that these ping and heartbeat
monitors would not have noticed. Even under the overload
conditions that caused our service to fail, none of our software
processes or hardware nodes completely crashed.

To compare Pinpoint to a simple Java exception monitor, we
modified the Java runtime classes to detect when exceptions
were created. Whether an exception is considered to be a
failure depends on both the kind of exception and where in the
program it manifests (e.g., an end-of-file exception is normal
at the expected end of a file, but a failure condition in the
middle of the file).

Though we expected that some exceptions would be raised
during normal operation of the system, we were surprised
by the degree to which this is true. We found that even
a fault-free run of Petstore 1.3.1 on JBoss generates over
27K Java exceptions during startup, and another 35K Java
exceptions under client-load for 5 minutes. We analyzed these
exceptions, and found that no one type of exception (declared,
runtime, core java.lang exceptions, application exceptions, etc)

accounted for all of them: 70% were declared exceptions,
and 30% were runtime exceptions. Furthermore, many of the
exceptions that were thrown were the same kind of exceptions
that are thrown during real faults, e.g., we saw over 500
NullPointer exceptions. Because of these issues, we concluded
that building an application-generic exception monitor was not
feasible for this class of system.

Application-specific Monitors: Log monitoring is a com-
mon error detection mechanism in deployed systems. Though
not as involved as application-specific test suites, log monitors
are still system- and application-speciic, usually requiring op-
erators to write regular expression searches to match potential
errors in server log files. We wrote a simple log monitor
(searching for “ERROR” messages) for our testbed and found
that it detected “failures” in almost all our experiments,
including false-alarms in all our fault-free control experiments!
After some study, we concluded that distinguishing these false
alarms from the true failures was non-trivial, and disregarded
these log monitoring results from our comparison.

We do not include application-specific test suites in our
comparison, since deciding what application functionality to
test would have been the determining factor in detecting
many of these failures, as a test suite can be engineered to
test for almost any expected fault. Additionally, Pinpoint’s
main improvement in comparison to these monitors is not its
ability to detect failures, but the fact that Pinpoint is a low-
maintenance, application-generic solution to high-level fault-
detection. Since we do not have real users generating workload
on our site, we do not include monitors which watch for
changes in user behavior.

V. EXPERIMENTS

In this section, we present experiments and analyses to
answer the questions of whether Pinpoint detects and localizes
failures, how quickly it detects failures, and whether Pinpoint
may be prone to false-alarms during normal day-to-day oper-
ations.

To test its fault detection and localization rates, we connect
Pinpoint to a widely-used middleware system, inject various
faults and errors into applications running on top of this mid-
dleware, and evaluate how well Pinpoint detects and localizes
the resultant failures. Because we inject faults into a live
application running on enterprise-ready middleware, we have
confidence that the application’s behavior following a failure
is realistic, even though the fault itself is artificially caused. By
detecting the change in application behavior during a failure
condition, we can realize that a fault has occurred.

For the majority of our experiments, we collected appli-
cation traces from Java exception injections, omission faults,
and source code bug injection experiments. Due to the time it
takes to run these experiments, we collected these traces once,
and analyzed them off-line. In addition, we injected JNDI
corruption and overload failures, and analyzed these failures
in real-time. In practice, we expect Pinpoint to be deployed as
a real-time monitor.
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A. Failure Detection

To measure detection capabilities, we use the metrics of
recall and precision, two metrics borrowed from information
retrieval research. When searching for items belonging to some
target population, recall measures the proportion of the target
population that is correctly returned, and precision measures
the proportion of returned items that actually match the target
population. In our context, perfect recall (recall=1) means
that all faults are detected, and perfect precision (precision=1)
means that no false alarms were raised.

Since a fault always exists in our fault injection experiments,
we are not truly testing the precision of our detectors here. So,
in this section we only measure the recall of our detectors.
Later, in Section V-F we present two experiments designed to
test Pinpoint’s precision in detecting failures.

The results of our systematic fault detection experiments
are summarized in Table I. Both path-shape analysis and
component-interaction analysis performed well when detecting
89-100% of major faults. The exception was source code bug
injections, which we discuss in detail in Section V-D.

In addition, we ran several experiments injecting naming
server corruptions while running the RUBiS application, as
well as overloading our testbed system with more clients than
it could handle. In our tests, Pinpoint correctly detected each
of these types of faults. In the case of the overloaded fault, our
database would usually saturate before the rest of the system,
causing exceptions in the middleware (time outs, etc.) when
attempting to contact the database. Pinpoint correctly noticed
these anomalies, usually discovering anomalous behavior in
the database table “component” or the entity beans responsible
for mediating application communication with the database.

Studying these results, we find that the detection rates for
Pinpoint’s analyses are quite stable across different applica-
tions and different fault types. Source code bug injection is
the only bug that is not detected as well as the others. Even
most minor faults are detected by our combined algorirthms.
Together, Pinpoint’s analyses detect 107 of the 122 exceptions
and omissions we injected. In contrast, the efficacy of checking
the HTTP error codes and HTML output for errors varies
significantly by application. What works well for Petstore 1.1
does not appear to work well for Petstore 1.3. Even used
together, the HTTP and HTML monitors detect only 88 of
the 122 injected exceptions and omissions. All of these faults
are also detected by our path-shape and component interaction
analyses.

To better understand what kinds of failures Pinpoint detected
and did not detect, we looked at several factors that might
be affecting Pinpoint’s detection capability, including the type
of fault we injected, the severity of the failure, and various
aspects of the components into which we injected the failure.
As illustrated in Figure 7, we found that the primary factor
in whether we detected a failure was the number of requests
affected by the fault: major failures, where more than 1% of
requests were affected were much more likely to be detected
than minor faults.

The number of peers of a faulty component (how many other
components it interacts with) also seems to be an important
factor: the more peers a component has, the more likely we are

Fig. 7. This figure shows the correlation between the impact of a failure
(Num Failed Requests), the number of peers our faulty component normally
interacts with (Num Peers), and whether our component interaction analysis
detects these faults. The lower the impact of a failure and the fewer peers
the faulty component has, the less likely component interaction analysis is to
detect the fault. Though not displayed here, our path shape analysis shows a
similar correlation.

to detect a failure in it. Together, this indicates that Pinpoint is
more likely to detect a serious failure than a minor failure, and
is more likely to detect a failure in a complicated component
interacting with many others than a simple component with
relatively little visible behavior.

While our analyses do not do as well detecting minor
failures, it is possible that this is an artifact of our experimental
setup. With only ≈ 1000 requests per experiment, a minor
failure affects fewer than 10 requests, and may not be notice-
able by our dynamic thresholding algorithm, or statistically
significant for our χ2 testing.

B. Identifying Failing Requests

Once we have detected a failure in the system, it can be
important to estimate the impact of the failure; that is, what
kinds of requests, and how many of them, are failing. Our
request-oriented path-shape analysis, as well as the HTTP and
HTML monitors, can help do this. Other monitors, including
component-interaction analysis, many of the low-level heart-
beat monitors and user-level monitors cannot directly identify
individual failing requests.

We evaluate failing request identification separately from
failure detection because, though dependent, they are sepa-
ratable issues. In particular, we can potentially detect a fault
in a system without identifying all (or even most) of the
failing requests, though determining which specific requests
are failing gives us the ability to judge the significance of the
failure and possibly help narrow down a cause.

We apply the same general metrics of recall and precision
which we introduced earlier, except now we apply them to
measure how well Pinpoint identifies faulty requests given that
a fault exists. In this context, perfect recall means that we have
identified all the true failing requests; and perfect precision
means that we have not mistakenly identified any successful
requests as faulty.
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Monitor Declared Exc. Runtime Exc. Omissions Src-PS 1.3 PS 1.1 PS 1.3 RUBiS

Path Shape, α = 2 78% / 93% 90% / 96% 90% / 100% 12% / 50% 61% / 92% 90% / 91% -
Path Shape, α = 4 75% / 89% 90% / 96% 85% / 96% 7% / 37% 59% / 89% 84% / 88% 68%/-
Comp. Interaction 56% / 89% 68% / 96% 70% / 96% 12% / 37% 44% / 89% 84% / 88% 83/-%

HTTP Errors 48% / 64% 53% / 70% 44% / 65% 10% / 37% 43% / 83% 28% / 32% -
HTML Monitoring 28% / 40% 24% / 35% 17% / 20% 2% / 13% 2% / 6% 66% / 72% -

TABLE I
FOR EACH MONITOR, WE SHOW HOW WELL IT DETECTED EACH TYPE OF FAULT ACROSS ALL OUR APPLICATIONS, AND HOW WELL IT DETECTED ALL

THE FAULTS IN EACH APPLICATION. IN EACH CELL, THE FIRST NUMBER INDICATES HOW WELL WE DETECTED ALL FAULTS IN THE CATEGORY, THE

SECOND RATE IS HOW WELL WE DETECTED MAJOR FAULTS IN THE CATEGORY. SINCE WE ONLY INJECTED SOURCE CODE BUGS INTO PETSTORE 1.3, WE

REPORT THOSE FAULTS SEPARATELY, AND DO NOT INCLUDE THEM IN THE OVERALL PETSTORE 1.3 REPORT.

Fig. 8. The precision and recall of discovering faulty requests with path-
shape analysis as we vary α. We display these results with a scatterplot of the
precision and recall in each of our experiments instead of an averaged ROC-
plot in order to emphasize the bimodal distribution of detected and undetected
failures. As we raise alpha, the average precision and recall of experiments
in which we detected failures improves, while the number of experiments in
which we do not detect failure at all increases.

Unlike our fault detection evaluation above, we can measure
both the precision and recall of identifying failing requests,
since we have both failing and successful requests in each of
our experiments.

Overall, we found our path-shape analysis does a good job
of detecting faulty requests without detecting false positives. It
is worth noting that the faulty request identification precision
and recall values in this section are during anomalous periods.
Because of our dynamic thresholding, we can catch most faulty
requests during these times, (even if their PCFG scores are
individually acceptable), and avoid detecting false positives
when the system is behaving normally.

In Figure 8, we investigate how adjusting the α parameter
affects the recall and precision of our path-shape analysis. As
we raise α, we lower recall and improve precision, from a
median of p = 14%,r = 68%|α = 1 to p = 93%,r =
34%|α = 8. Note that we do not have to recall all the faulty
requests to detect a fault in the system. Not including our
source code bug expts, our path-shape analysis detects 83%
of the faults when α = 8.

C. Localizing Failures

Above, we have evaluated Pinpoint’s ability to detect
anomalies when a failure occurs. Here, we analyze how well
Pinpoint can determine the location of a fault within the system
once an anomaly has been noticed.

We continue to use the metrics of recall and precision
to measure fault localization ability. After localizing a fault,
a fault monitor returns a set of components suspected of
causing the failure, ranked by the degree to which we believe

each component might be responsible for the failure. We
simplify our evaluation by ignoring this ranking, and simply
considering all statistically significant suspects as equal.

In this context, with only one fault injection per experiment,
recall becomes a boolean metric, indicating whether or not the
faulty component is a member of the suspect set. Precision
measures how many false suspects there are.

The overall results of our localization tests comparing
Pinpoint’s detection and localization techniques to each other
are shown in Figure 9. In this figure, we show how our well our
decision-tree based localization and our component interaction
based localization fare in our experiments.

We show the results for three variants of our decision
tree, each showing how well the decision tree fares as the
requests classified as faulty become more and more “noisy”.
First, we apply our decision tree to only the faults that we
injected failures into. These results are competetive with our
component-interaction analysis—the only false suspects that
occur are due the structure of the application itself. For
example, the decision tree cannot distinguish between two
components that are always used together. Also, there exist
components which appear to correlate very well with some
failures, hiding the true cause of a fault.

Second are the results for our decision tree applied to the
requests known to have been injected with a fault or affected
by a cascading fault. These results are noisier, and introduce
false suspects when we actually localize the cascaded fault.
Finally, the results for our end-to-end PCFG and decision tree
show the highest miss rate, as we contend with noise both
from the PCFG selection mechanism and the cascaded faults.
Not represented on this graph, but worth noting is that in our
clustered experiments with Petstore 1.1, when the decision tree
was not able to pinpoint the exact instance of a component that
was causing the problem, it was still able to narrow down the
problem, either to the correct class of components, or to the
machine the faulty component was running on.

From this we conclude that a decision tree’s ability to
localize failures depends heavily on the noise in the traces.
Here, the decision tree’s localization capability drops when we
add cascaded failures and false positives from runs of the path-
analysis algorithm. This indicates that heuristics for separating
primary from cascaded faulty requests, such as picking the
first anomalous request from a user’s session as the primary
fault, are likely to improve the performance of decision-tree
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Fig. 9. Localization recall of our techniques per fault type.

localization in real deployments.

D. Source Code Bugs and Structural Behavior

Here, we delve into detail on the source code bugs that
we injected into the Petstore 1.3.1 application, describing in
detail what kinds of bugs we injected, how we injected them
and the impact of the bugs on the system, and finally analyze
Pinpoint’s performance.

To see whether Pinpoint would be likely to detect faults
introduced by minor bugs in source code, we wrote a source-
code bug injector for the Java language. We use the Polyglot
extensible compiler framework [24] as a base for a Java-to-
Java compiler that can inject several different simple bugs,
summarized in Table II. While these are all minor bugs,
evidence suggests that no bug is so trivial that it does not
occur in real software [25]. Some of the common (but much
more involved) source code bugs we did not inject includes
synchronization and deadlock issues, subtle API incompata-
bilities, etc. Realistic bug injection of these more subtle issues
is an open area for future research.

For our experiments, we first generate an exhaustive list of
the spots where a bug can be injected within a component, after
eliminating locations in unused code. Then, we iterate over
these “bug spots” and inject one bug per run of the application.
At runtime, we record when this modified code is exercised
to track what requests may be tainted by the fault.

Most bugs caused relatively minor problems (such as an
extra “next page” button, where no next page exists) rather
than major problems that would keep a user from browsing
the site and purchasing products. Overall, only a third of the
bugs we injected kept any user session from completing. Of
the bugs that did keep sessions from completing, almost all
affected less than 50 sessions during an experiment. Only one
bug injection in the shopping cart code was more serious,
causing all sessions (over 400) to fail.

After running these experiments, we found that path-shape
analysis and component interaction analysis did not do signifi-
cantly better, overall, than the HTTP monitors; and moreover,
detected a low percentage of the bug injections in absolute
terms. Upon inspection, the reason was that most of the
software bugs that were injected, even though they caused
user visible changes to the output of the application, did not
cause component-level changes internally. This indicates that
analyzing component interactions (either directly or through
path-shape analysis) is not likely to detect this class of simple

source code bugs, and it may be fruitful to analyze other
system behaviors as well.

Pinpoint’s analyses were able to detect bugs when they
did change component’s interactions, however. For example,
the bug with the largest impact on user sessions, kept the
shopping cart from correctly iterating over its contents. While
this behavior is internal to the shopping cart and not noticeable
by itself, it also causes some JSP tags in the “view shopping
cart” page to stop iterating—since the cart never sends its
contents to be displayed. Pinpoint detected this failure, and
noticed that the JSP tags related to displaying cart items was
faulty.

E. Time to Detect Failures

Another measurement of the efficacy of a monitor is how
quickly it detects failures. Machine crashes are usually de-
tected by low-level monitors within seconds, while higher-
level failures and monitors can take longer. The periodicity
of running application-test suites usually determines how long
it will take them to detect failures. User-level monitors take
up to many minutes to notice a failure, as problems that
affect user behavior can take some time to affect the measured
indicators. The most comprehensive fault monitor, customer
service complaints, can take hours to days to report failures,
based on the severity of the failure. Pinpoint’s goal is to detect
the higher-level failures within the time scales of low-level
monitors.

To test the time to detection, we monitor the RUBiS
application in real-time, and arbitrarily picked one component,
SBAuth, into which we inject failures. SBAuth provides user
authentication services, verifying user names and passwords
and returning user IDs to the rest of the system. We measure
the time it takes Pinpoint to detect the error by injecting
an exception into SBAuth and recording how long it took
for Pinpoint to notice a statistically significant anomaly in
RUBiS’s behavior. We also spot checked our results against
fault injections in several other of RUBiS’s components to
ensure that we were not seeing behavior unique to faults in
SBAuth.

In general, Pinpoint detected the failure within the range
of 15 seconds to 2 minutes, depending on the system’s and
Pinpoint’s configurations. To explore what effects Pinpoint’s
time-to-detection, we repeated our experiment many times,
varying the client load, the periodicity with which Pinpoint
checks for anomalies, and the amount of immediate “history”
Pinpoint remembers as a component’s current behavior.

At low client loads (e.g., 10 clients), our injected fault
is triggered infrequently, causing Pinpoint to detect failures
relatively slowly. Additionally, the nature of the RUBiS load
generator causes high variance, as randomized client behavior
sometimes trigger faults rapidly and sometimes slowly. As
shown in Figure 10, increasing the number of clients improves
the time to detection, and the variance across our experiments
decreases. As we continue to increase the client load, however,
our time to detection begins to increase again, due to a
performance artifact in our instrumentation of JBoss. With too
many clients, the observations from the system are delayed in
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Bug Type Description Good code Bad code Num
Loop errors Inverts loop conditions; loop{ while(b){stmt;} loop{ while(!b){stmt;} 15
Mis-
assignment

Replaces the left-hand-side of an as-
signment with a different variable

i = f(x); j = f(x); 1

Mis-
initialization

Clear a variable initialization. int i = 20; int i = 0; 2

Mis-reference Replaces variables in expressions with
a different but correctly typed variable

Avail = InStock − Ordered; Avail = InStock − OnOrder; 6

Off-by-one E.g., replaces < with <= or >= with
>

for(i = 0;i<count;i++) for(i = 0;i<=count;i++) 17

TABLE II
OVERVIEW OF SOURCE CODE BUG TYPES AND HOW MANY WE INJECTED INTO OUR APPLICATIONS. NONE ARE DETECTED BY THE JAVA COMPILER.

Fig. 10. The time to detect a failure as we vary the client load on the
system. The time to detection improves as more of the system is exercised
with more clients, then degrades as the extra load induces queueing delays in
reporting observations. In these experiments, the current component behavior
is based on the prior 15 seconds of observations, and Pinpoint searches for
anomalies every 5 seconds.

the report queue, meaning that at any given time Pinpoint is
not analyzing the current state of the system. We believe that
a more efficient observation system would allow continued
improvement with increased client load.

By decreasing the amount of history Pinpoint remembers
to represent a component’s current behavior, we increase
Pinpoint’s sensitivity to changes in application behavior. In
short, changes in behavior can dominate the model of current
behavior more quickly if there is less “old” behavior being
remembered. However, this causes a much less pronounced
effect than the client load.

We also experimented with changing how often Pinpoint
searches for anomalies, but found that as long as the period
was significantly less than our time-to-detection, it was not a
major factor in the time to detect a fault.

F. Resilience to False Alarms

To determine Pinpoint’s resilience against erroneously
marking common day-to-day changes to a service as anoma-
lies, we ran two experiments. In one, we significantly changed
the load offered by our workload generator—we stopped
sending any ordering or checkout related requests.

In our second experiment, we upgraded the Petstore v1.3.1
to a bug-fix release, Petstore v1.3.2. For both our path-shape

and component interaction analyses, we used a historical
analysis based on the behavior of Petstore 1.3.1 under our
normal workload. Talking with Internet service operators, we
confirmed that software upgrades occur often in large sites.
While a major software upgrade will change functionality
significantly and require Pinpoint to retrain its models of
system behavior, these major upgrades occur on the order of
months, while minor software upgrades, such as bug fixes,
occur on the order of days or weeks.

In both of these experiments, neither our path-shape anal-
ysis nor our component-interaction analysis triggered false-
positives. In the workload-change experiment, none of the
paths were anomalous—as to be expected, as they are all
valid paths. And though the gross behavior of our components
did change with the workload, the fact that we analyze
component interactions in the context of different types of
requests compensated for this, and we detected no significant
changes in behavior.

In the upgrade to Petstore 1.3.2, we also did not detect
any new path shapes; our component behaviors did change
noticeably, but still did not pass the threshold of statistical
significance according to the χ2 test. Though not comprehen-
sive, these two experiments suggest that our fault detection
techniques are robust against reporting spurious anomalies
when application functionality has not changed.

VI. DISCUSSION

A. The Base-Rate Fallacy

The base-rate fallacy declares that, when looking for rare
events, any non-zero false positive rate will overwhelm a
detector with even perfect recall. [26] argues that this makes
most existing intrusion detection systems unusable.

In the context of our broader project, Recovery Oriented
Computing, we argue that false positives are only a problem
when dealing with them is expensive. We advocate making
the cost of online repair for failures sufficiently low, such that
a reasonable degree of “superfluous recovery” will not incur
significant overhead.

We have successfully demonstrated this autonomic recovery
both in the context of J2EE middleware [9] in which microre-
boots make it almost free to recovery from transient failures;
and in two storage subsystems for Internet services [27],
[28] where, in response to another set of Pinpoint’s anomaly
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detection algorithms, any replica can be rapidly rebooted
without impacting performance or correctness. Cheap recovery
has another benefit for fault detection as well: when false
positives are inexpensive, its reasonable to lower detection
thresholds to catch more faults (and more false positives), and
potentially catch problems earlier.

B. Limitations of Pinpoint

Here, we describe two limitations of Pinpoint that we have
observed. The first is a reconfirmation of one of Pinpoint’s
assumptions, the second is a limitation we discovered in
analyzing components with multi-modal behaviors.

Request-Reply Assumption: We decided to test Pinpoint’s
assumption of monitoring a request-reply based system in
which each request is a short-lived, largely independent unit
of work by applying Pinpoint to a remote method invocation
(RMI) based application. While RMI is a request-reply system,
a single interaction between the client and server can encom-
pass several RMI calls, and the unit of work is not always
well defined.

In our experiment, we monitored ECPerf 1.1, an industry-
standard benchmark for measuring the performance of J2EE
implementations. ECPerf contains 19 EJBs and 4 servlets.
Because running unmodified applications is one of Pinpoint’s
goals, we decided to use the simplest definition of a unit
of work, a single RMI call from the client to the server.
Unfortunately, most of resultant paths we captured were single
component calls, with no structure behind them. Thus, when
we injected faults into ECPerf, there was no observable change
in the path, since there was very little behavior in the path in
the first place. While path-analysis did detect some anomalies
in the system when a fault occurred, they were not in the
“requests” we injected with faults (presumably some state in
the application was corrupted and affected later RMI calls). To
generalize Pinpoint to this kind of system, we should expand
our definition of a path to encompass multiple interactions,
though this will likely entail application-specific tailoring.

Multi-Modal Behavior: We found another limitation of
our component interaction analysis was the monitoring of
components with multi-modal behaviors.

While monitoring the clustered version of Petstore 1.1, one
of the components we monitored was the middleware-level
naming service. This service has one behavior mode in the web
tier (where it mostly initiates name lookups) and another in
the application tier, where it mostly replies to lookups. When
a component exhibits multiple modes of behavior depending
on its physical location, our component interaction model at-
tempts to capture a non-existent average of the multiple modes,
and subsequently detects all the components as deviating from
this average!

One possible solution is to use a model that captures
multiple modes of behavior, though this has the danger of
mis-classifying truly anomalous behavior as simply “another
mode.” Another, possibly more attractive, option is to extend
the component-identification scheme to differentiate between
components placed, for example, in the web tier vs the
backend, thus allowing Pinpoint’s analysis to build separate

models for each. The difficulty is to ensure the naming scheme
captures the right details, without splitting valid component
groups apart to the extent that the models lose their ability to
validate behaviors across many peers.

C. Other Statistical Learning Techniques

Though we do not claim that the algorithms we use are
the best analysis methods for detecting anomalies in an appli-
cation’s structural behavior, we have tried several alternatives
as we built our system. Here is a short description of our
experiences with these alternate techniques.

Before settling on our PCFG scoring function presented in
Section III-B, based on measuring the deviation from expected
probabilities, we also tried and discarded two scoring functions
used in natural language processing: first, taking the product of
the probabilities of all the transition rules, and second taking
their geometric mean. While the former had an unacceptable
bias against long paths, the latter masked problems when only
a small number of improbable transitions were exercised.

Recently, together with Peter Bodik, we have used one-
class support vector machines (SVM) to detect anomalies
in the path shapes and component interaction we captured
in our experiments. While SVM worked as well as our χ2

test of goodness of fit for detecting anomalies in component
behaviors, standard SVM techniques did not work well when
analyzing path-shape behaviors. A core step in an SVM
analysis is to compute the similarity score (a dot-product-like
function called a kernel method) between two paths. However,
in the case of path-shapes, a good anomaly detector must
not only detect differences in a path, but also estimate how
significant those differences are. While our PCFG scoring
method does this with its calculation of the deviation from ex-
pection, the standard SVM tree-comparison techniques do not.
We are currently investigating whether any feature-weighting
additions to SVMs might improve the SVM analysis of path-
shapes.

Additionally, we have experimented with using data clus-
tering to localize failures [5], though we now believe decision
trees are more appropriate because of their potential to grace-
fully handle scenarios of multiple failures and failures due to
interacting components.

VII. RELATED WORK

Request Tracing: Request paths have been used for black-
box monitoring for performance troubleshooting modelling.
Aguilera et al [29] have used packet-sniffing and statistical
analysis to derive the call-graphs between black-boxes. In
contrast to the direct tracing done by Pinpoint, this only
produces a view of the majority behavior of the system, and
thus hides any anomalies existant within the system. Magpie
captures the path-like dynamic control flow of a program
to localize performance bottlenecks [30]. Unlike Pinpoint,
Magpie instruments the system at a very low-level, recording
events such as thread context switches and I/O interrupts
to build a model of a system’s resource consumption and
performance characteristics. In contrast to both of these efforts,
Pinpoint’s focus is on automating the initial detection of
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failures, specifically, failures in application-level functionality
which may not manifest as a performance problem.

In addition to these research efforts, several commercial
products provide request tracing facilities for J2EE systems;
PerformaSure and AppAssure are applied in pre-deployment
testing and IntegriTea can be applied to a live system, vali-
dating our position that it is practical to record paths at a fine
level of detail [31]–[33]. However, as far as we know, none
of these tools performs application-level failure detection or
fault localization.

Anomaly Detection: Anomaly detection has gained currency
as a tool for detecting “bad” behaviors in systems where many
assumed-good behaviors can be observed, including intrusion
detection [34], [35], Windows Registry debugging [36], [37],
finding bugs in system code [38], and detecting possible
violation of runtime program invariants regarding variable
assignment [39] or assertions [40]. Although Ward et al
previously proposed anomaly detection as a way to identify
possible failures for Internet sites [41], they start with a
statistical model of a site’s performance based on 24 hours
of observation, whereas Pinpoint builds models of the site’s
structural behaviors.

Localizing Faults: Researchers have attacked the prob-
lem of localizing faults in many different contexts and
with many different approaches. Event-correlation systems for
network management [42], [43] and commercial problem-
determination systems such as OpenView [44] and Tivoli [45]
typically rely on either expert systems with human-generated
rules or on the use of dependency models to assist in fault lo-
calization [46]–[48]. Brown et al [49] have also used dynamic
observation to automatically build such dependency models.
This approach can produce a rank-ordered list of potential
causes, but they are intrusive and require a human to first
identify the components among which dependencies are to be
discovered. In contrast, Pinpoint can identify the root cause
(modulo the coverage of the workload) non-intrusively and
without requiring human identification of vulnerable compo-
nents.

The primary differentiator between the work reported here
and Chen et al’s fault localization in [12] is that these
systems assume the existence of pre-labeled data (e.g., failed
or successful requests) and attempt to localize the fault to part
of the system. In contrast, the work presented here assumes
no prior knowledge of faults, and starts with fault detection.

VIII. FUTURE DIRECTIONS

Pinpoint detects injected and secondary faults in realistic
but small-scale test applications. The value of path-based
analysis for failure management has been demonstrated in one
production Internet service already [3], and we are currently
working with two other large Internet service to apply Pinpoint
monitoring to their systems. In addition, versions of Pinpoint
have been integrated as fault monitors for two systems at
Stanford [27], [28]. Pinpoint has also been distributed to
outside researchers as a basis for new experimentation, and
is available upon request.

In addition to path shapes and component interactions, we
are investigating additional lower-level behaviors that could

be analyzed to reveal information about different high-level
behaviors, such as database access patterns and structures of
persistent data. Monitoring patterns in these behaviors may
allow us to detect very different kinds of important failures.

As a monitored system changes, through software upgrades
and other major modifications, it is necessary to retrain the
reference models of normal behavior. Two simple strategies
include 1) explicitly triggering retraining along with major
software updates; and 2) constantly learning new models, and
keeping many models on hand simultaneously as possibly
correct representations of normal behavior. The challenge in
choosing a strategy for retraining models is to both avoid false
positives as the reference models drift from the system’s actual
(and correct) behavior, and to avoid false negatives by learning
significant faulty behavior as normal. Exploring this challenge
in the context of an evolving Internet service is an important
avenue of future work.

We believe Pinpoint’s techniques may be applicable to
other types of systems where building models of application
behaviors and policies to detect anomalies and inconsistencies.
Applications running on overlay networks, or peer-to-peer ap-
plications, are potential targets, though in a widely-distributed
application, centralizing the information for analysis would
be more challenging. Sensor networks are a useful subclass
of peer-to-peer systems whose applications are often data-
analysis-centered by nature and in which data-aggregation
machinery is already being put in place [50], making sensor
nets a potential appealing target as well.

IX. CONCLUSIONS

Pinpoint’s key insight is that aggregating low-level behavior
over a large collection of requests, using it to establish a
baseline for “normal” operation, and then detecting anomalies
with respect to that baseline is an effective way to detect a
variety of faults. Indeed, the key strength of machine learning
techniques is to identify patterns and deviations from those
patterns, from large collections of undifferentiated data. A
large number of independent observations is necessary for
this approach to work (and in particular to allow the baseline
model to be built), but we argue that in today’s componentized
applications this is a safe assumption. As long as the system is
working mostly correctly most of the time, the baseline model
can be extracted from this very behavior. Furthermore, even
complex services provide a fairly limited number of discrete
interactions to the user, so the number of “legitimate” code
paths tends to be much smaller than the number of possible
code paths, which gives further intuition behind the success
of the approach.

We showed that the specific techniques of PCFG’s and
decision tree learning to analyze component interaction and
path shapes can yield information about a variety of realistic
transient faults, with no a priori application-specific knowl-
edge. This approach combines the generality and deployability
of low-level monitoring with the sophisticated failure-detection
abilities usually exhibited only by application-specific high-
level monitoring.

Finally, by exploiting the fact that many interactive Internet
services are being built on standard middleware platforms, we
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can apply these techniques without modifying the applications
themselves, with minimal impact on the applications’ normal
throughput.

We believe Pinpoint represents a useful addition to the roster
of dependability-related uses of statistical anomaly detection,
and hope to more deeply explore its potential with our ongoing
work.
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