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Exploiting Visual Constraints in the Synthesis 
of Uncertainty-Tolerant Motion Plans 

Armando Fox and Seth Hutchinson 

Abstract- We introduce visual constraint surfaces as a mech- 
anism to effectively exploit visual constraints in the synthesis 
of uncertainty-tolerant robot motion plans. We first show how 
object features, together with their projections onto a camera 
image plane, define a set of visual constraint surfaces. These 
visual constraint surfaces can be used to effect visual guarded 
and visual compliant motions (which are analogous to guarded 
and compliant motion using force control). We then show how 
the backprojection approach to fine-motion planning can be 
extended to exploit visual constraints. Specifically, by deriving a 
configuration space representation of visual constraint surfaces, 
we are able to include visual constraint surfaces as boundaries of 
the directional backprojection. By examining the effect of visual 
constraints as a function of the direction of the commanded 
velocity, we are able to determine new criteria for critical velocity 
orientations, i.e. velocity orientations at which the topology of the 
directional backprojection might change. 

1. INTRODUCTION 
0 PERFORM effectively in real-world settings, robots T must be able to plan and execute tasks in the presence 

of uncertainty. Typical sources of uncertainty in a robotic 
work cell include limited sensing accuracy, errors in robot 
control, and discrepancies between geometric object models 
and physical objects (including the parts to be manipulated 
and the robot itself). Because of this, the application of 
robotic technology to manufacturing problems has typically 
been restricted to situations in which uncertainty can be 
tightly controlled (for example, by using specialized fixturing 
devices). 

The problems associated with uncertainty in robotic systems 
have long been the subject of research in the robotics commu- 
nity. A number of planning systems have been developed that 
characterize uncertainty by systems of constrained variables 
[6], [22], [32], [39]. These variables are propagated through 
transformations that represent the effects of actions on uncer- 
tainty in the planner’s world description, providing the planner 
with worst case estimates at each step of the plan. There are 
two primary disadvantages to this approach: 1) the planner 
always assumes the worst, propagating upper bounds even 
when actual bounds are likely to be much tighter, and 2) the 
planner must know U priori the effects of manipulation actions 
and sensing on the uncertainty in the description of the work 

cell. There is no mechanism for revising behavior at execution 
time to account for dynamically occumng uncertainties. 

An alternative to a priori consideration of worst case error 
is to use sensory feedback to adapt task execution to the 
actual state of the world that the robot encounters. Force- 
based control can be used to effect guarded [42] and compliant 
motions [28], [31], [35], [41], making assembly actions robust 
by exploiting physical constraints imposed on motion by the 
geometry of the workspace. To date, the most successful 
planning systems that use this approach comprise the preimage 
family of planners [13], [15], [26] ,  [27]. The key to the 
preimage planning paradigm is the transformation of physical 
constraints into geometric constraints, which can be expressed 
as C-surfaces, i.e., sets of points in the configuration space 
where the manipulator makes contact with a physical surface. 
Thus, equipped with a set of equations that govern motion 
and friction in the configuration space, preimage planners 
are capable of developing motion plans that are tolerant of 
uncertainties in the manipulator’s position (represented by an 
error ball in the configuration space), its trajectory (represented 
by an error cone), and even in part dimensions (represented 
by added dimensions in the configuration space [ 131, [ 141). 

Informally stated, a preimage of a goal is the set of points 
from which a commanded motion is guaranteed to reach and 
terminate recognizably in the goal. Because preimages are 
often difficult to compute, Erdmann [ 151 introduced buck- 
projections as a means of usefully approximating preimages 
by separating goal reachability from goal recognizability. 

The primary limitation of force control is that it can only 
be used to constrain motion along directions normal to the 
C-surfaces. Position control must be used to control motions 
in directions tangent to C-surfaces. Therefore, hybrid posi- 
tiodforce control is not sufficient when the exact manipulator 
and goal positions are not known in the dimensions of position 
control. As an example, suppose that the robot’s task is to 
insert a peg into a hole in a block, and that the position of the 
hole is not precisely known. The insertion cannot proceed until 
the peg is directly over the hole; but this cannot be achieved 
using either position control (since the exact goal position is 
not known), or force control (since force control can only be 
used to constrain motion normal to the block surface). 
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motion control has steadily progressed, from early look and 
move systems in which vision was used to recognize and 
locate an object prior to its manipulation [36], [37], to current 
systems in which visual feedback is incorporated directly 
into the control loop [2], [18], [30], [38], [40]. This recent 
ability has made sensor-based robotics useful for a number 
of tasks where sensorless manipulation had previously failed, 
for example, in welding [l], [lo], [23]. To date, however, 
the corresponding motion planning problem has not been 
addressed. Thus, even though visual servo control systems 
are now available, there is no motion-planning system that is 
capable of exploiting such a control system. 

In this paper, we present a geometric motion planner that 
exploits visual constraints in the synthesis of uncertainty- 
tolerant motion plans. Specifically, we extend the preimage 
formalism to exploit visual constraints. In Section 11, we 
introduce the concept of visual constraint surfaces, which are 
generated by projecting workspace features onto the image 
plane of a fixed camera [21]. A visual constraint surface can be 
used to constrain visually controlled motions in the same way 
that physical surfaces can be used to constrain force controlled 
motions. In Section 111, we show how visual constraint surfaces 
in the workspace are mapped to configuration space constraint 
surfaces for the special case of C = R2. 

In Section IV, we review preimages [27], backprojections 
[ 151, and algorithms for the construction of backprojections 
[12]. In Section V, we show how the directional backpro- 
jection, i.e., the backprojection with respect to a specified 
velocity, can be extended to exploit visual constraint surfaces. 
In particular, we discuss our implemented backprojection 
algorithm (which extends the plane-sweep algorithm presented 
in [ 12]), and evaluate the added computational complexity 
of considering visual constraint surfaces. By allowing vi- 
sual constraint surfaces to be included as boundaries of the 
backprojectipn, we can often significantly increase the size 
of the backprojection, as illustrated in Fig. 13. Following 
this, in Sections VI and VII, we discuss the nondirectional 
backprojection, and show how it must be modified to exploit 
visual constraints. In Section VII, we discuss a number of 
related issues, including multistep versus single-step plans, 
the problem of optimal camera placement, and extending the 
backprojection algorithm to the 3D case. * 

11. A GEOMETRIC SPECIFICATION FOR VISUAL CONSTRAINTS 

This section introduces visual constraint surfaces, visual 
guarded motion, and visual compliant motion. Although the 
planning algorithms subsequently discussed will be imple- 
mented in configuration space (C-space), this section will show 
how visual constraint surfaces are developed in the workspace. 
Their C-space representation is deferred to Section 111. 

A. Visual Constraint Surfaces 

Consider a workspace containing a number of solid objects 
and a fixed camera. If the imaging process is modeled by 
perspective projection [20], projection rays from each point 
in the workspace converge on the camera focal center. In 
general, any one-dimensional object feature will project onto 

Fig. 1 .  Ruled VC surface generated by a curved 3D edge. 

a planar curve on the camera image plane. We will refer to the 
projection of an object feature onto the camera image plane as 
an image feature. An object feature is said to be unoccluded 
if no projection ray emanating from that feature intersects the 
interior of any other object or the robot. Intuitively, this means 
that nothing is blocking the camera's view of the feature. 
In this paper, the only one-dimensional object features that 
will be considered are the 3D edges of objects. Note that for 
the special case of polyhedral objects, all image features are 
straight line segments. 

Consider a 3D edge defined by the parametric space curve 
Z ( T )  and its corresponding image feature defined by the 
planar parametric curve .'( T ) .  The projection equations relating 
2 ( ~ )  and .'(T) depend only on the position and orientation 
of the camera and a set of camera parameters, e.g., the focal 
length of the lens. Assume that the image plane is defined 
with origin at ro and local coordinate system specified by the 
orthonormal vectors I, J. The normal to the image plane is 
specified by K = I x J .  Then, for the case of perspective 
projection, the projection equations relating Z ( T )  and .'( T )  

are given by: 

where Df is the distance from the image plane to the center 
of projection of the camera, i.e., the focal length of the lens. 
These parameters can be obtained by calibration procedures 
described in [9]. Once they are derived, if the camera remains 
fixed (as we assume), the same projection equations can be 
used to compute the image-plane coordinates of any image 
feature, given the world coordinates of an object feature. 

A visual constraint (VC) surface is a ruled surface S(T, A) 
bounded by Z ( T ) ,  .'(T), and the rays joining their respective 
endpoints, as in Fig. 1. In the special case of polyhedral 
obstacles, all image features are straight line segments, so that 
the VC surfaces are polygons. A VC surface is defined by 

S(T, A) = 2 ( T )  + A(Z(7) - .'(.)). (2) 

Recall that a ruled surface is generated by a family of lines 
[17]. For S(T,  A), a particular generating line is obtained for 
each valid value of T .  We will refer to such a line as a 
generating line of S(T, A), or simply a generating line. For 
perspective projection, each generating line is a projection ray 
through the center of projection and the image plane point 
.'(r). 
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Note that a visual constraint surface does not intersect any 
obstacles. This is because a necessary condition for an edge to 
have a projection on the camera image plane is that the edge 
not be occluded. Similarly, if only a part of a particular 3D 
edge is visible (perhaps the rest of the edge is occluded by 
another object), only the visible part will have a projection on 
the image plane, so that the resulting surface will not intersect 
any obstacles. 

1)  Visual Compliant Motion: Compliant motion has been 
exploited in various motion planning and execution strategies 
[14], [16], [27], [28]. During compliant motion, a physical 
surface is used to constrain the motion of a robot along one or 
more degrees-of-freedom [28], [3 11, [35], [41]. For example, 
sliding motion along a surface might be achieved by ensuring 
that some constant force be maintained in the direction normal 
to the surface. 

We define visual compliance as compliant motion along 
a (virtual) VC surface, such that the manipulator's motion 
is constrained to always remain in contact with a particular 
generating line of the VC surface. Visual compliance can be 
achieved by means of a closed-loop visual servo-system, as 
described in [8], [9]. 

2) Visual Guarded Motion: We define visual guarded mo- 
tion analogously to guarded motion using physical surfaces, in 
which the robot moves until force feedback indicates contact 
with a physical surface [42]. We say that the force feedback 
provides a termination condition for the motion. VC surfaces 
can be used for visual guarded motion; that is, the manipulator 
can move along a trajectory that intersects a VC surface and 
be instructed to stop when this intersection occurs. This is 
possible because the intersection is a visually observable event. 

Since VC surfaces are virtual rather than physical, the 
motion planner also has the option of ignoring them, in contrast 
to the force-based approach, which must explicitly consider all 
physical surfaces on which sticking may occur [15]. 

111. VISUAL CONSTRAINTS IN TWO DIMENSIONS 

In this section, we describe the computation of visual 
constraint rays in the case of a 2D workspace populated by 

. polygonal obstacles. We begin by discussing the construction 
of visual constraint rays in the workspace, which is a special 
case of the formalism developed in Section 11. We then discuss 
the selection of robot features that will be used by the visual 
servo-system. Following this, we describe how to map visual 
constraint rays into the C-space C = R2. Finally, we discuss 
the time complexity of the algorithms presented in this section. 

A. Workspace Visual Constraint Rays 

In the case of a 2D workspace, the camera is a one- 
dimensional sensor positioned in the plane. Using perspective 
projection, all projection rays converge on the camera projec- 
tion center. We assume that if an object vertex is unoccluded, 
i.e., a projection ray from that vertex to the camera focal 
point intersects the interior of no workspace obstacle, then the 
projection of that vertex in the camera image can be located 
by the vision system. Workspace VC rays can be computed by 

Fig. 2. 
vertices. 

Construction of workspace VC rays from unoccluded obstacle 

CMVorbx 

Fig. 3. Different positions of the polygonal robot give different CM vertices. 

extending rays from unoccluded workspace obstacle vertices 
to the camera projection center, as shown in Fig. 2 .  

B. Selecting Robot Features for Visual Servo Control 

In a 2D workspace, visual compliant motion is effected by 
moving a particular robot vertex so that it remains in contact 
with some VC ray emanating from a workspace object vertex. 
This raises the question of which vertices of the robot should 
be used in visual compliant motions. 

If the robot is a simple polygon, its projection on the camera 
image plane is a line segment whose endpoints represent the 
two furthest-apart robot vertices simultaneously visible to the 
camera. Note that there may be other robot vertices that project 
to points on the line segment; however, for the purpose of 
visual compliant motion, we assume that the vision system can 
only robustly distinguish in real time the two vertices whose 
projections are the endpoints of the image plane line segment, 
i.e., the silhouette of the robot. This restriction could be lifted 
if the vision system were capable of robustly distinguishing 
other unoccluded vertices in real time. 

We will refer to the two robot vertices that project to the 
endpoints of the line segment as CM vertices, to indicate that 
they are the only robot vertices suitable for effecting compliant 
motion along a VC ray. Note that the particular robot vertices 
that are CM vertices can change with the position of the robot. 
Fig. 3 shows the same robot in two different positions for 
which the CM vertices are different. In certain nongeneral 
configurations of the robot, two robot vertices may lie along 
the same projection ray. In such cases, we may arbitrarily 
select one of these as a CM vertex. Thus, for any specified 
position of the robot, we will obtain two CM vertices whose 
projections are the endpoints of the image plane line segment 
representing the robot. There cannot be only one CM vertex 

/ 
I 
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m 
Fig. 4. The spatial relationship between the robot vertices 
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Fig. 5. 

unless the robot is itself a line segment and is collinear with 
a projection ray. 

Construction of two CVC rays from a single workspace VC ray. 

C. Configuration Space Representation of Visual Constraints 

Visual constraint rays in the workspace give rise to C-space 
visual constraint rays (CVC rays). In mapping workspace 
VC rays to CVC rays, we must allow for either of the CM 
vertices to be moved compliantly along the workspace VC 
ray. Suppose that a particular vertex a0 of the robot is taken as 
the origin of the robot’s internal coordinate frame to compute 
a representation of the C-space, C. Since trajectories in C 
will specify the motion of vertex a0 among the C-obstacles, 
we must find an appropriate representation for compliant 
motion of an arbitrary robot vertex aj along a VC ray.Since 
we are considering the case where C = R2, the spatial 
relationship between a0 and aj is fixed. Specifically, if for 
some configuration f, the world coordinates of a0 are given by 
the vector Zo(4, then the world coordinates of uj in the same 

‘ configuration are given by Zj($ = Z O ( ~  + (Zj(0) - Zo(0)). 
Fig. 4 illustrates this relationship for vertices a0 and al .  

Let e: be a VC ray emanating from a workspace obstacle 
vertex bi, and let aj be a CM vertex of the robot when the 
robot is positioned such that aj coincides with b;. Then, as the 
robot moves compliantly, maintaining contact between aj and 
e:, vertex a0 will move along a straight line trajectory parallel 
to e% but displaced from it by &(0) - Zj(0). We construct a 
CVC ray evc in C, whose endpoints are the endpoints of e: 
displaced by Zo (0) - Zj (0). Motion of a0 (the reference vertex) 
along evc corresponds to visual compliant motion of vertex aj 

along e:. Similarly, visual guarded motion of a0 terminating 
on eve corresponds to visual guarded motion of aj terminating 
on e z ,  which is a visually observable event. The construction 
of CVC rays using this technique is illustrated in Fig. 5. 

1) Intersection of CVC Rays with C-Obstacles: When a CVC 
- ray intersects a C-obstacle, visual compliant motion cannot be 

* 

wadrsl#rc vc lay - - .  - - . c-SpaceVCray 

Fig. 6. 

effected along the portion of the CVC ray that lies inside of the 
C-obstacle, since doing so would cause the robot to overlap a 
workspace obstacle. In this case, we must truncate the CVC 
ray at those points where it enters CB, retaining only those 
segments of the CVC ray that lie outside of B (we will use 
the notation CBi to indicate a particular C-obstacle, and CB 
to represent the union of all C-obstacles). In Fig. 6, the CVC 
ray constructed from the workspace VC ray e: intersects the 
interior of C-obstacle CBI. That part of the CVC ray that lies 
outside of CB includes two line segments: el is the segment 
between the camera and artificial vertex b3 on edge E, e2 is 
the segment from artificial vertex b2 to artificial vertex b l .  In 
this example, only the segments el and e2 are included in the 
set of CVC rays. 

2) Intersection of Multiple CVC Rays: Although workspace 
VC rays intersect only at the camera projection center, two C- 
space VC rays may intersect at a point other than the camera 
projection center. Fig. 7 shows one example of intersecting 
CVC rays. Since the CVC rays corresponding to a single 
workspace VC ray are parallel, the intersecting CVC rays can 
not have originated from the same workspace VC ray. The 
physical interpretation of the intersection of two CVC rays 
is a change from executing compliant motion of vertex ai 
along workspace VC ray e:L to compliant motion of vertex 
aj ,  j # i along workspace VC ray e E l ,  k # 1. For example, 
such an intersection point might correspond to a change from 
compliant motion of the top right vertex of the square robot 
along VC ray EEl, to compliant motion of its bottom-left 
vertex along e z 2 .  

3) Algorithmic and Complexity Issues: The C-space repre- 
sentation of the VC rays can be computed by using two 
successive plane-sweep algorithms. The first constructs all 
of the CVC rays, and the second is used to truncate these 
CVC rays, as described in Section 111-C-1). Plane-sweep 
algorithms comprise a general class of algorithms that operate 
by stepping through a queue of geometrically interesting or 
critical events, and performing some local processing at each 
event in order to construct a global solution to some input 
problem. Conceptually, a line is “swept across” the plane, 
stopping at the critical events. At any time, the sweep-line 
divides the space into two half-spaces, such that the solution 
in one half-space has been computed and will not be affected 
by the computation of the solution in the other, half-space. 
Further, between any two critical events, the solution that is 

A CVC ray may intersect the interior of CB. 
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Fig. 7. Intersection of two CVC rays. 

being constructed does not change in a qualitative way. 
The input to a plane-sweep algorithm is an arrangement of 

geometric objects and the output is some desired operation on 
the objects. Plane-sweep algorithms can be used, for example, 
to compute the intersection points of an arrangement of line 
segments or the union of an arrangement of polygons [34]. The 
advantage of a plane-sweep algorithm over a naive algorithm 
is usually reduced-time complexity. As an example, a naive 
algorithm for computing the intersection points of 71 line 
segments runs in O ( n 2 )  time, but a plane-sweep algorithm can 
compute them in O( ( n  + c) log 71)  time, where c is the number 
of intersection points. In the worst case c = O ( n 2 ) ,  but in 
practice, it is usually small and the plane-sweep algorithm is 
more efficient than the naive algorithm. 

The initial set of CVC rays can be constructed by a variant 
of the traditional plane-sweep algorithm in which the sweep- 
line is a half-line that is rotated about the projection center 
of the camera. Let P represent the projection center of the 
camera. Then anchor a half line at P,  and sweep this half 
line from H I  to 0 2 ,  where 81 And H2 are the angles at which 
the sweep-line anchored at P intersects the two extreme 
points of the line segment that defines the camera image 
plane. The obstacle vertices define the set of events at which 
the sweep stops. By properly maintaining the status of the 
set of intersections of the sweep-line with obstacle edges, 
it is possible to determine whether each visited vertex is 
unoccluded. Making this determination and performing the 
processing necessary to update the status of the sweep-line 
requires O(1ogn) operations at each vertex. Since there are 
O ( T L )  vertices, determining the set of unoccluded vertices 
requires O( 71 log 71,) operations. This is a slight variation of 
the algorithm for computing visibility graph edges described 
in [25]. 

In addition to determining the set of unoccluded vertices, 
we must also determine which vertices of the robot are CM 
vertices for each unoccluded obstacle vertex. In general, for a 
robot with ~ I L  vertices this can be done by a naive algorithm 
using O ( m )  operations for each obstacle vertex. However, we 
can interleave the process of determining the CM vertices with 
that of determining the set of unoccluded vertices by making 
the following observation. The set of CM vertices changes 
only when the rotational sweep-line becomes parallel to an 

edge in the convex hull of the robot. In other words, as the 
sweep-line rotates, the same two robot vertices will be the 
CM vertices until the sweep-line becomes parallel to an edge 
in the convex hull of the robot. Therefore, by modifying the 
rotational sweep so that it also stops at orientations parallel to 
edges in the convex hull of the robot, we can simultaneously 
compute the set of unoccluded obstacle vertices and the two 
CM vertices for each unoccluded vertex. The complexity of 
the resulting algorithm is O ( 7 n  log 711) to compute the convex 
hull of the robot, and O( (7rr + 1 1 )  log 71)  to perform the sweep. 
If we assume that 71 > 711, the algorithm requires O(n logn) 
operations. 

Truncating the CVC rays can also be accomplished by a 
plane-sweep algorithm. Here, a line is swept across the plane 
in the direction perpendicular to the camera image plane. The 
events are the vertices of C-obstacles and the intersections 
between C-obstacle edges and CVC rays. Such an algorithm 
requires O( (71  + c )  log 7)) operations, where e is the number 
of intersections of CVC rays with C-obstacle edges. 

Iv .  PREIMAGES AND BACKPROJECTIONS 

In this section, we provide a review of preimages and 
backprojections. We begin by reviewing the preimage for- 
malism of LozanePkrez, Mason, and Taylor [27]. Following 
this, we present a review of backprojections [ 151, including a 
discussion of issues related to goal recognizability. Finally, 
we describe the algorithm of Donald and Canny [12] for 
computing a directional backprojection in O ( n  log T I )  time 
(where 71, is the number of vertices of the C-space obstacle 
region). Readers that are familiar with this work may wish to 
skip this section. 

A. Preimage Planning 

Lozano-Perez, Mason, and Taylor [27] present a formalism 
for the automatic synthesis of fine-motion strategies using 
preimages. Informally stated, a preimage for a specified goal 
region is a set of points from which a commanded motion is 
guaranteed to terminate recognizably in the goal region. The 
main advantage to the preimage formalism is that it allows 
the fine-motion planner to explicitly consider uncertainties in 
position and control. 

In [27], position uncertainty is modeled by an error ball, 
Bc.p(p), in the C-space, centered on the actual position p.  
Velocity uncertainty is modeled by an uncertainty cone, whose 
vertex angle represents the maximum directional deviation 
between the commanded velocity and the actual velocity. If 
a position p 0  lies within the error ball centered on measured 
position p:, then p;*, is said to be consistent with po. Intuitively, 
this means that the sensor might “mistakenly” measure p o  
as p;. A similar definition holds for measured versus actual 
velocity vectors. 

The velocity uncertainty cone plays a key role in the 
computation of preimages (and, as will be seen below, in the 
computation of backprojections). Specifically, both preimages 
and backprojections may include in their boundaries free edges 
(also called free rays). A free edge is a line segment that is 
parallel to an edge of the inverted velocity cone, erected at 

/ 
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the proof do not generally occur in practice led Erdmann to 
conjecture without proof that in an environment with a known 
finite number of constraints, preimages should be computable. 
Canny has shown that this is indeed the case when the set of 
possible robot trajectories has a finite parameterization, and 
the set of feasible trajectories is a semialgebraic subset of 
the parameter space [7]. Canny’s approach is to cast the fine 
motion planning problem as a decision problem in the theory 
of the real numbers, and to then use quantifier elimination 
algorithms (see, e.g., [ 111) to derive parametric semialgebraic 
sets that are preimages. Backprojections from recognizable 
goal regions also constitute valid preimages [15], [26]. Such 
backprojections are the topic of the next section. 

Fig. 8. Modifying the goal region to account for position uncertainty. 

some C-obstacle vertex. For example, in Fig. 8, the top two 
boundary edges of the backprojection (outlined in light dashed 
lines) are free edges. 

The formal definition of a directional preimage Pe (G) is as 
follows. Let G be a goal region in Cvalid (where Cvalid is the 
set of valid configurations in the configuration space C). A 
motion command M = (GO, TC), consists of a commanded 
velocity .‘e (which is considered to be a unit vector with 
orientation e), and a termination predicate TC,  which is used 
to determine when the motion has achieved the goal. The 
preimage of G for motion M is defined as a subset of points, 
R C Cvalid, such that if M commences from any point in 
R, TC will eventually return true, at which point the motion 
will terminate in G. A maximal directional preimage is the 
largest possible preimage relative to a given motion direction 
and goal region.’ 

A preimage planner works by backward-chaining from the 
goal region G to the C-space region I in which the initial 
configuration lies. If the backward-chaining process terminates 
successfully, the result is a sequence of directional preimages 
Pl, P2, . . . , P, such that: a) Pi is the directional preimage of 
Pi-1 relative to the commanded velocity Go, and termination 
condition TCi, b) PI is the directional preimage of G, and 

~ c) I c P,. The reverse sequence of motion commands 
M,, M,-I,. . . , M I ,  with Mi = (.‘ee,, TCi), is the generated 
r-step motion strategy guaranteed to recognizably reach the 
goal configuration from the initial configuration. 

Mason has shown that the LMT approach of preimage 
backchaining is bounded complete, i.e., if a solution with 
bounded number of motions exists, the LMT preimage 
backchaining method will find it, and that it suffices to 
consider directional preimages as subgoals in the recursive 
backchaining process [29]. These results, however, do not 
imply that preimages are computable. In fact, Erdmann has 
proven by a reduction from the halting problem, that, in 
arbitrary environments, preimages and backprojections are 
uncomputable [ 151. That the recursively defined constraints in 

’ This explanation paraphrases Latombe’s discussion of preimages [25], 
which also presents the relevant equations and formal definitions of the 

* termination predicate. 

B. Backprojections 

A major problem in computing preimages is that there are 
many circumstances under which a real termination predicate 
TC may not be able to reliably detect entry into the goal 
region. There are two primary reasons for this: uncertainty 
in sensing and limitations on the amount of information 
available to the termination predicate. Because of these dif- 
ficulties, Erdmann introduces backprojections [ 151 as a means 
of approximating preimages. Essentially, a backprojection is 
a preimage without a termination predicate; that is, a back- 
projection is the set of all points from which an appropriate 
commanded velocity is guaranteed to enter the goal, regardless 
of whether entry into the goal is recognized. The lack of 
a termination predicate makes backprojections weaker than 
preimages, but backprojections are often easier to compute 
than preimages, and are appropriate for use in certain planning 
problems. 

1 )  Uncertainty in Sensing: Fig. 8 depicts a rectangular goal 
region G. Its directional backprojection consists of the rect- 
angular region G together with the region enclosed by light 
dashed lines. A trajectory with a commanded velocity straight 
down originating in the backprojection is guaranteed to enter 
G. Due to position sensing uncertainty, modeled by an error 
disk of radius cpr only points inside the rectangle R can be 
unambiguously sensed as being in the goal. This is because, for 
actual positions in G but not in R, there exists an interpretation 
of the measured position p* that is not in G. Put another way, 
because of uncertainty, we can equivalently regard the robot as 
a disk of radius cp and assume perfect sensing, and require that 
the disk be entirely contained in G. This implies that the center 
point of the disk must be at least a distance eP from every edge 
of the goal region. However, if the reduced goal region R had 
been used as a base from which to backproject (resulting in 
the directional backprojection enclosed by bold dashed lines), 
all of the points in the goal region could be unambiguously 
determined to be in the goal region, since they are all at least 
cp distant from any possible nongoal interpretation. 

Erdmann introduces a method for constraining goal sets so 
that they will be suitable bases for backprojection, but does not 
formalize all the requirements. Essentially, he begins by choos- 
ing a subset of the goal that is guaranteed to be recognizably in 
the goal, given position sensing uncertainty, and backprojects 
from this “foundation.” The resulting backprojection is then 
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iteratively enlarged by adding those regions of the goal that are 
either recognizably in the goal, or from which any trajectory 
will recognizably enter the existing backprojection region. 
Although an informal example is given for the translating 
polygonal robot case, no algorithm is presented for this case 
or in general. Latombe, et al. [26] have formalized the idea 
of restricting the goal by constructing goal kernels (subsets of 
the goal for which recognizability is guaranteed), and by using 
sticking edges as goal regions. In both cases, since termination 
in the goal is guaranteed, such backprojections constitute valid 
preimages. 

2 )  Limitations of the Termination Predicate: Erdmann dis- 
cusses three possibilities for the termination predicate: no 
sense of history, no sense of time, and no sense of history 
or time. A termination predicate without history cannot rely 
on information regarding where the robot has been in the past 
to disambiguate a current position reading p*. For example, 
suppose there are two goal regions, and the measured position 
p* is consistent with being in either one. Knowing the set of 
past positions of the robot might be sufficient to determine 
which goal is indicated by the current position reading. That 
is, one of the two interpretations might be inconsistent with 
the sensor history despite being consistent with TI*.  The 
termination predicate without history may not rely on past 
sensor readings in this way. 

Similarly, the termination predicate without sense of time 
cannot determine which of several consistent interpretations 
of p* is correct by considering the velocity of the robot and 
the elapsed time since leaving the initial position. 

The motivation for considering a termination predicate with 
neither history or time is that for a given commanded motion, 
the starting position & and the elapsed time since starting the 
motion will not be known until runtime. Thus, it is impossible 
for the planner to develop a complete strategy based on these 
parameters. This is a byproduct of the decomposition of the 
robot motion problem into separate planning and execution 
stages. In this paper, we consider only termination predicates 
with no sense of history or of time. 

C. Computing Backprojections in C = R2 
Donald and Canny have implemented a plane-sweep algo- 

rithm for computing backprojections of polygonal regions for 
the case C = R2 [12]. The algorithm works by sweeping 
a line across the plane in the direction opposite that of the 
commanded velocity. The sweep-line stops at events that are: 
( I )  vertices of C-obstacles, (2) vertices of the goal region, 
( 3 )  the intersection of two free edges, (4) the intersection of 
a free edge with a boundary of the goal region, and (5) the 
intersection of a free edge with an edge of a C-obstacle. In 
each case, the backprojection is extended appropriately, using 
only local decision criteria. 

Fig. 9 illustrates the operation of the algorithm on a simple 
example. The backprojection being built is enclosed by bold 
lines. The commanded velocity is straight down, with the 
illustrated uncertainty cone. In each frame, a new vertex is 
considered and appropriate edges indicated by arrows are 
added to the backprojection. When the sweep finishes, the 

‘ 

Commanded 
Velocity h5 

Fig. 9. Plane-sweep of a simple 2D polygonal environment. 

directional backprojection has been computed. The vertices 
are numbered in the order in which they are encountered by 
the sweep. Vertices 1 and 2 appear to be on a horizontal line, 
so that the order in which they are encountered is ambiguous. 
In such cases, a small perturbation may be introduced so that 
vertices 1 and 2 are no longer on the same horizontal line, or 
the vertices may be sorted in planar-lexicographic (x, ?])-order. 

Donald shows [12] that the algorithm is correct provided 
that the environment has a bounded number of vertices, and 
that the friction cone is larger than the velocity uncertainty 
cone. (This latter criterion is necessary because without it, the 
algorithm would not be able to rely only on local information 
to determine how to continue the backprojection.) 

v. THE EFFECT OF VISUAL CONSTRAINTS 
ON THE DIRECTIONAL BACKPROJECTION 

In this section, we show how the backprojection algorithm 
of Donald and Canny can be modified to exploit visual 
constraints. We will refer to a backprojection that includes 
CVC rays as a VC-enlarged backprojection, and we will 
denote a VC-enlarged backprojection by B,,, (G). We begin 
by describing the new event types that must be considered 
by the plane-sweep algorithm. We then present two exam- 
ples of backprojection continuation at such events. Following 
the examples, the formal decision criteria for determining 
whether to include a CVC ray in the backprojection boundary 
are presented. We then discuss the time complexity of the 
modified directional backprojection algorithm. Finally, we 
present examples of IlvcG(G) for C = R2 computed by our 
implementation of the modified algorithm. 

A. New Events for the Plane-Sweep Algorithm 

The first step in modifying the Donald and Canny directional 
backprojection algorithm to exploit CVC rays is to determine 
the new events that must be considered during the plane sweep. 
When CVC rays are included, there are three new types of 
events that must be considered: 

1) The intersection of a CVC ray with a C-obstacle edge 
(or a C-obstacle vertex); 

2) The intersection of a CVC ray with a free edge of the 
inverted velocity uncertainty cone; 

3 )  The intersection of two CVC rays. 
When a CVC ray intersects a C-obstacle edge, we create 

an artificial vertex at the intersection point. If a particular C- 
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obstacle vertex has a CVC ray incident on it, that vertex is 
marked to indicate this fact, and the equation of the incident 
CVC ray is attached to it. Thus, only intersections of CVC rays 
with C-obstacle vertices will be considered in the remainder 
of the paper. 

In the worst case, there will be O ( n )  new artificial vertices 
for the CVC rays that intersect C-obstacle edges. There 
are O(n2)  intersections of free edges with CVC rays, but 
during the construction of the backprojection, only the first 
intersection of a free edge with a CVC ray is considered. 
Therefore, the number of new events of this type that must 
be considered by the algorithm is O(n) .  

Finally, there are, in the worst case, O(n2) pairwise inter- 
sections of CVC rays. To see this, consider that the intersection 
of two CVC rays occurs when the two CM vertices of the robot 
are simultaneously in contact with two distinct workspace VC 
rays, say and ez j .  Such an intersection point can be 
created by positioning one CM vertex of the robot on e Z i ,  
and then moving the robot compliantly along this ray until the 
remaining CM vertex contacts e z j .  

Thus, the number of events considered by the modified 
plane-sweep algorithm is O(n + c),  where c is the number 
of intersections of pairs of CVC rays. 

W 

B. Example of Backprojection Continuation 

Before presenting the formal decision criteria for the new 
events, we present the following two examples. These ex- 
amples show how visual constraint surfaces can be used 
to bound the backprojection, which is made possibly by 
exploiting visual compliance (which is analogous to physical 
compliance). 

Consider an obstacle vertex b, with incident C-obstacle 
edges eL  and eL- l ,  and incident CVC ray eve, as shown in Fig. 

The commanded velocity is straight down. Edge e,-l has 
already been added to the backprojection, and it forms the left 
edge of the current backprojection boundary. The algorithm 
must decide whether to continue the backprojection along e,, 
ever or the free edge of the inverted velocity uncertainty cone 

Intuitively, the algorithm tries to make the backprojection 
as large as possible. Suppose e, is a sliding edge. Then 
choosing it will always result in the maximal backprojection 
because if either eTic or er?, made the backprojection larger, 
it would intersect the interior of the C-obstacle bounded by 
e,. Conversely, suppose e, is a sticking edge. In this case, a 
simple comparison of the orientations of evc and eev suffices 
to determine which ray should be chosen, namely, the one that 
forms the larger angle with the direction perpendicular to the 
commanded velocity. 

When a free edge intersects a CVC ray, it is not always 
the case that the CVC ray should be added to the boundary 
of the backprojeciton. Figs. 11 and 12 illustrate an example 
of such a case. Suppose that the motion begins at the point 
R with a commanded velocity straight down. When the robot 

eev. 

. 

*Although CVC rays are not necessarily incident on C-obstacle vertices, 
we may assume this without loss of generality since artificial vertices are 
introduced where CVC rays intersect C-obstacle edges. - 

F m  constnint nypvbudy dasctsd 
PMue1w- ty-e 

Fig. 10. 
vertex. 

intersects the CVC ray eocr the execution system equipped 
with visual feedback will begin visual compliant motion along 
the ray toward the goal. However, if visual compliant motion 
continues until the C-obstacle is contacted, the motion may 
not reach the goal. Instead, somewhere along evc, between 
points p and q,  the execution system must resume motion in a 
downward direction. But the region of C-space in which this 
change of direction must occur is a free-space region, so that 
position sensing uncertainty becomes a problem. Specifically, 
since visual feedback cannot be used to determine where 
the robot is positioned along a projection ray, the robot 
will comply to evc and leave the backprojection region, 
continuing until contact is made with the C-obstacle upon 
which evc terminates. Therefore, we cannot guarantee that 
the single commanded motion would reach the goal, and we 
conclude that the CVC ray in this example should not be a 
backprojection boundary. We note that it would be possible to 
allow for the use of position sensing to detect when the robot 
has reached point p. However, determining that p has been 
reached is essentially equivalent to the goal recognizability 
problem, and therefore greatly complicates the computation 
of the backprojection (indeed, it was this difficulty that led 
Erdmann to separate goal recognizability and goal reachability 
in his original formulation of backprojections [ 151). 

Deciding how to continue the backprojection from a C-obstacle 

.I 
Y 
7. 

\ 

C. Intersection of a CVC Ray and a C-Obstacle Edge 

The decision criteria for an event corresponding to the 
intersection of a CVC ray and a (possibly artificial) C-obstacle 
vertex are as follows. As in the aforementioned example, 
the vertex event being processed is a (possibly artificial) C-  
obstacle vertex b, with incident obstacle edges e, and e,-1 
and incident CVC ray eve. We denote by eev the free edge 
of the velocity uncertainty cone erected at b. We assume e,-1 
has already been added to the backprojection, as in Fig. 10. 
We denote the orientation of the sweep-line by g, i.e., the 
direction of the sweep itself is perpendicular to @. We assume 
that y' points to the interior of the backprojection region that 
lies behind the sweep-line, so that it would point to the right 
in Fig. 10. The decision criteria are as follows: 
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1) CVC ray cl , ( .  terminates on a nongoal sticking edge. 
In this case, compliant motion along et,(.  would result in 
contact with a sticking edge from which motion to the goal 
is not possible. Therefore, PI,,. should not be included in the 
backprojection. 

2)  CVC ray f a l . , .  terminates on a nongoal sliding edge e, 
along which sliding motion away from the goal occurs. In this 
case, a motion that brings the robot into contact with cJ will 
continue by sliding away from the goal. Therefore should 
not be included in the backprojection. 

3) CVC ray I ' , . ~  terminates on a nongoal sliding edge ei 
along which sliding motion toward the goal occurs. In this 
case, a motion that brings the robot into contact with e:, will 
continue by sliding towards the goal. Therefore cl . ,  can be 
included in the backprojection. 

terminates on a goal edge. Visual compliant 
motion along e,,,. will bring the robot into contact with the 
goal, so er,, can be included in the backprojection. 

The cases enumerated above are exhaustive, and the cases 
in which e,1c should be included in the backprojection occur 
only when el ,c  terminates on an edge already known to be in 
the bac kprojec tion. 

at which a free 
edge of the velocity uncertainty cone eeu and a CVC ray 
intersect are as follows. As in Section V-C, the vector f points 
along the sweep-line toward the interior of the backprojection. 

I )  If the two edges incident on %I are already in the 
backprojection, no new edge is added to the backprojection 
boundary (this case is illustrated in Fig. 15). 

2) If cor.  is incident on a C-obstacle edge or vertex that is 
already included in the backprojection, and the angle between 
e,,,. and f is greater than the angle between e,,,, and f ,  continue 
the backprojection along 

COW=CI. 

B.o"n 

4 )  CVC ray 

Fig. I 1. The correcf backprojection, when a CVC ray intersects a free edge, 
and the CVC ray does not terminate in the backprojection. 

The decision criteria at a vertex event 

3) Otherwise, continue the backprojection along e,?.. 

-roJ.otkn (mcorrem inclmmios of EVC nr) 

Fig. 12. 
and the CVC ray does not terminate in the backprojection. 

An incorrect backprojection, when a CVC ray intersects a free edge, 

1) If 1', is a sliding edge, continue the backprojection along 
( ' t i  

2) Otherwise, if the angle between I' , , ,  and is greater than 
the angle between e,, and j', continue the backprojection 
along c,  ( .  

3 )  Otherwise, add P,, ,  to the backprojection. 

D. Intersection of a CVC Ray and a Free Edge 

The CVC ray should be used to continue the backprojection 
at the intersection of a CVC ray and a free edge of the velocity 
uncertainty cone only when the termination point of the CVC 
ray on a C-obstacle edge is known to be in the backprojection. 
This becomes evident by enumerating the possible types of 
C-edges on which a CVC ray ?(,( may terminate. 

E. Intersection of a Two CVC Rays 

Since the intersection of two CVC rays is a visually observ- 
able event, i.e., the two CM vertices simultaneously contact 
two workspace VC rays, at such an intersection point, the 
backprojection algorithm should be continued along the CVC 
ray that maximizes the size of the enclosed backprojection. 
Let f be as defined above, and let the two intersecting CVC 
rays be e , , , ~  and r,,,2. Then 

1 )  If the angle between p ,  , 1 and is greater than the angle 
between e , , , ~  and f ,  continue the backprojection along 
f t c l i  

2) Otherwise, continue the backprojection along e,, 2. 

F. Asymptotic Time Bounds 

Before beginning the plane-sweep to compute a directional 
backprojection, O ( 7 1 )  free edges can be erected at sticking 
vertices and a separate plane-sweep can be used to intersect 
them with each other and obstacle edges in time O ( n  log 7 1 ) .  

Therefore, we make the following proposition. 
Proposition I :  The time to compute the directional back- 

projection with visual constraint rays Bl,r.o(G) is O((n  + 
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Fig. 13. Effect of considering CVC rays in computing the directional bac 

c) log n), where c is the number of pairwise intersections of 
CVC rays. 

Pro08 The total number of events to be examined is 
O(n  + c), since there are O(n)  additional artificial vertices 
introduced by the CVC rays, and c vertices that correspond 
to the intersection of pairs of CVC rays. At each event, a 
constant number of local comparisons is required: (a) a vertex 
incident on a C-obstacle edge requires one test to determine 
whether e; is a sliding or a sticking edge, and if the latter, 
one test to determine whether evC or eev should be used to 
continue the backprojection; (b) a vertex that corresponds 
to the intersection of a free edge with a CVC ray requires 
one test to determine whether evc or eev should be used to 
continue the backprojection; (c) a vertex that corresponds to 
the intersectian of a pair of CVC rays requires one test to 
determine which CVC ray should be used to continue the 
backprojection. Thus, the decision of how to continue the 
backprojection at any event is O(1). Finally, as with all plane- 
sweep algorithms, at each event the algorithm must perform 
book-keeping operations that require time O(1og n). Therefore, 
the asymptotic running time of our modified version of the 
Donald and Canny algorithm for computing a directional 

0 backprojection becomes O( (n + c )  log n). 

G. 2 0  Examples 

We now present some examples contrasting backprojections 
that contain CVC rays to those obtained without considering 
CVC rays. The two sets of examples illustrate the effect of 
considering versus ignoring CVC rays. In each case, observe 
that the CVC rays never make the backprojection smaller, and 
frequently make it larger. 

In all of the example figures, we use the following conven- 
tions. 

:kprojection. 
1 I 

1) The directional backprojection is enclosed by a dashed 
line, with edges contributed by visual constraints highlighted 
in bold. 

lined. 

I 

% 

2) Workspace obstacles are shaded; C-obstacles are out- 

3) Solid arrows denote the commanded velocity direction. 
4) The camera projection center (workspace coordinates) is 

-1 
Y' 

indicated by a cross. I 
-7 / r  

! 

5) The goal polygon is shaded black. 
6) The direction I9 = 0 corresponds to movement straight 

down the page. 
Fig. 13(a)-(d) compare the traditional backprojection with 

the VC-enlarged directional backprojection for a range of 
commanded velocities. In each frame, the traditional direc- 
tional backprojection, Bs(G) is shown on the left, and the 
VC-enlarged backprojection B,,, (G) is shown on the right. 

Frame (a) corresponds to commanded velocity 0 = 0. In this 
case, the backprojection is significantly enlarged by the CVC 
ray y. Note that free edge z, given by the inverted velocity 
uncertainty cone erected at vertex b in both backprojections, 
terminates on a workspace obstacle vertex, but 3: does not 
close the backprojection in the right-hand figure since y 
is nearly parallel to 3:. (The top horizontal edge of the 
backprojection is given by the environment's bounding box.) 
That the backprojection continues from b along z rather 
than along a CVC ray indicates that z results in a larger 
backprojection than any CVC ray incident on b. 

Frame (b) corresponds to I9 = -7r/6. In this case, even 
though a small part of a CVC ray contributes to the back- 
projection, the backprojection is not significantly enlarged 
by considering it. This is because for the given position of 
the camera, there is no CVC ray incident on b that would 
enlarge the backprojection, since we have stipulated that 
visual compliant motion can only be robustly effected using 
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CM vertices. This example suggests that the enlargement of 
backprojections due to visual constraints is sensitive to camera 
placement; we will discuss this in Section VIII-B. 

Frame (c) corresponds to H = +T/& This is similar to the 
case H = 0; the backprojection is significantly enlarged by the 
CVC ray y. It is interesting to note that the backprojection 
seems to be enlarged the most when the orientations of 
CVC rays are most nearly perpendicular to the commanded 
velocity direction (and therefore the free edges of the velocity 
uncertainty cone). When this occurs, the free edges and 
CVC rays “fan out” from C-obstacle vertices to enlarge the 
backprojection into a funnel-like region. 

The commanded velocity of frame (d) is nearly identical to 
that of frame (c). However, the VC-enlarged backprojection 
is significantly different for these two cases. The reason for 
this, as will be shown in the next two sections, is that the 
commanded velocity direction in these two cases is very near 
a critical orientation, at which the topology of the VC-enlarged 
backprojection changes in a qualitative way. 

VI. THE NONDIRECTIONAL BACKPROJECTION 

The backprojection algorithm presented in Section V com- 
putes a directional backprojection relative to a specific com- 
manded velocity. A complete planner should consider all pos- 
sible commanded velocities at each iteration of the backchain- 
ing algorithm. This can be achieved by considering the nondi- 
rectional backprojection I?(G), which is defined as the union 
of all directional backprojections together with their respective 
velocity directions: 

(3) 

Donald has shown that the topology of the directional 
backprojection changes only at a finite set of critical veloc- 
ity orientations, 0 E S1 1121. Therefore, the nondirectional 
backprojection can be represented by a finite set of directional 
backprojections; one for each critical orientation, and one for 
each noncritical interval. In this section, we review critical 
orientations, and the time complexity of computing the tra- 
ditional nondirectional backprojection, i.e., the backprojection 
without visual constraints. 

B ( G )  = lJ(&9(C) x (0)). 
H 

A. Critical Orientations 

Critical orientations occur under the following three condi- 
tions 1121. 

1)  A free edge becomes parallel to an edge in the obstacles’ 
visibility graph. To see this, notice that a free edge erected at 
some obstacle vertex bo will rotate with H and may eventually 
rotate to an angle 81 at which it intersects another obstacle 
vertex b l .  When the ray rotates beyond 81, it will be truncated 
by the obstacle edge incident on 61, and part of that obstacle 
edge may be included in the backprojection. Given this argu- 
ment, note that the critical angle 81 occurs exactly when the 
free edge coincides with the visibility-graph edge connecting 
bo to 01. Hence, such orientations are called v-graph critical. 

2) An obstacle edge changes from a sliding into a sticking 
edge or vice versa. This occurs when a free edge of the velocity 

uncertainty cone is parallel or antiparallel to an edge of the 
friction cone. These orientations are called sliding-critical. 

3 )  The intersection point of two free edges of the back- 
projection intersects an obstacle edge. Since the free edges 
rotate with H ,  so do the backprojection vertices formed by 
their intersections. When any such vertex intersects an obstacle 
edge, one of the free edges incident on that vertex disappears, 
to be replaced by the obstacle edge. These are called vertex- 
critical orientations. 

Donald presents an algorithm for computing these critical 
orientations. He then shows that the nondirectional backpro- 
jection may be represented by a finite set of directional back- 
projections: one directional backprojection for each critical 
orientation, and one representative directional backprojection 
for each noncritical interval (where the value of 8 at which 
the backprojection is computed may be chosen arbitrarily). 

Since the representative directional backprojection inside a 
noncritical interval may be computed for an arbitrary value 
of 8 in that interval, it is possible that the algorithm will fail 
to compute a directional backprojection that entirely contains 
the polygonal start region R. To avoid this problem, Donald 
1141 suggests adding R to the arrangement of polygons, thus 
adding the following critical orientation criterion. 

4)  An edge of R intersects a free edge of the backprojection. 
These orientations are called R-critical. 

For an input of 7) C-obstacle vertices, R has a constant 
number of edges and there are O ( n )  free edges bounding 
the backprojection. Therefore there are O( 7 1 )  R-critical ori- 
entations. If the directional backprojection for some R-critical 
orientation 8, contains all the vertices of R, then a commanded 
motion from R with velocity Go, will reach the goal. 

B. Time Complexity 

Although Donald shows that there are 0(7),’) critical ori- 
entations of type 3), he proposes a naive O ( 7 1 ’ )  algorithm 
to compute them, as follows. There are O ( n )  free edges, 
and therefore O(7r’) possible intersections of free edges. 
These intersections are free-space vertices of the directional 
backprojection that trace out circles as the velocity orientation 
is changed. Each such circle may intersect O ( n )  obstacle 
edges. Therefore, the number of intersections of circles with 
obstacle edges if U ( T / , ~ ) .  The O ( n 2 )  critical orientations are 
contained in this set of size O(n’). 

The motivation for this algorithm is that, of all possible 
O ( n )  free-space backprojection vertices, the subset of these 
that will contribute to the critical orientations is not known in 
advance; however, if all intersections of possible free-space 
vertices with obstacle edges are computed in advance, this set 
is guaranteed to contain all of those that will contribute to 
critical orientations. 

Donald’s critical-slice algorithm recomputes the backprojec- 
tion from scratch at each critical orientation and inside each 
noncritical interval. Recently, Briggs has presented an algo- 
rithm that incrementally computes the nondirectional back- 
projection, achieving an 0 ( n 2  log 71) time complexity 141, 151. 
The reduced complexity is due in part to an amortized analysis 
that shows there are at most O(rr’) topological changes to the 
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vertex with a CVC ray. 

A free-edge-critical orientation, just before an intersection of a free 

boundary of the backprojection over the entire range of 8. The 
algorithm also uses a dynamic data structure to keep track 
of the rotating free-space vertices, rather than computing all 
possible free-space vertices in advance. 

VII. THE EFFECT OF VISUAL CONSTRAINTS 
ON THE NONDIRECTIONAL BACKPROJECTION 

In this section, we describe how the introduction of vi- 
sual constraints affects the computation of the nondirectional 
backprojection. In particular, we discuss the new critical 
orientations that result from the introduction of visual con- 
straints, and the time complexity of a modified nondirectional 
backprojection algorithm. 

According to the procedure outlined in Section V, the 
decision of whether to continue the backprojection along a 
CVC ray from a given vertex event depends, among other 
things, on whether incident C-obstacle edge e; is a sliding or 
a sticking edge. Sliding versus sticking behavior changes only 
at sliding-critical Orientations [ 121, so these orientations are 
also critical for VC-enlarged backprojections. 

The introduction of visual constraints also adds two new 
criteria for critical orientations. The first is analogous to 
Donald’s vertex-critical criterion, and the second to his vgraph- 
critical criterion. 

A. Free-Edge-Critical Orientations 

Suppose fi is a vertex of the backprojection formed by the 
intersection of two rays of the inverted velocity uncertainty 

Fig. 15. 
vertex with a CVC ray. 

A free-edge-critical orientation, just after the intersection of a free 

5)  A free-space vertex of the backprojction intersects a CVC 
ray. We call such orientations free-edge-critical. 

Proposition 2: There are O( n2) free-edge-critical orienta- 
tions. 

Proof: We showed that the O(n) workspace obstacle 
vertices give rise to O(n) CVC rays. Donald shows that 
there are O(n2)  vertex-critical orientations resulting from the 
intersection of free vertices with O(n) obstacle edges. The 
same argument applies by treating the O(n)  CVC rays as 

Of course, it is not always the case that the backprojec- 
tion topology changes at free-edge-critical orientations, as 
illustrated in Figs. 11 and 12. 

obstacle edges. 0 

B. VC-Critical Orientations 

Before describing the second critical orientation criterion 
added by CVC rays, we note the conditions from which it 
follows directly: 

The visibility of a vertex does not change with the 
commanded velocity direction 8, since the workspace 
obstacles and camera are fixed. Therefore the workspace 
VC rays do not change with 8. 
Consequently, the C-space representation of the VC rays 
does not change with 8, since CVC rays are constructed 
from workspace VC rays by considering only the vectors 
joining adjacent robot vertices. Since the robot cannot 
rotate, these vectors never change. 

8 

cone. As the commanded velocity direction 8 varies, pi moves 
along a circular arc. A critical orientation occurs when this 
circular arc intersects a CVC ray, since the decision of which 
of the free edges or CVC ray should be used to continue the 
backprojection may change. This is illustrated in Fig. 14 and 
15. By analogy to Donald’s v-graph critical orientations, we 
express this new critical orientation as follows. 

With respect to the directional backprojection, cvc rays 
behave as if they were nonsticking obstacle edges termi- 
nating at the camera focal center, since they do not move 
and sticking Can never Occur on them. 

With these statements in mind, we note the second new cri- 
terion for critical orientations added by CVC rays, constructed 
by analogy to Donald’s condition 3): 
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topology of the backprojection over all values of H [4], 
[ 5 ] .  This same analysis should apply to backprojections that 
include visual constraints, since there are only 0 ( 7 r 2 )  addi- 
tional critical orientations due to visual constraints. Brigg’s 
algorithm [4], [5] computes the nondirectional backprojection 
in 0 ( 7 1 *  logn) time when there are O ( n 2 )  critical orientations. 
We believe that it should be possible to extend this algorithm 
to compute B,,  (G) in time O(n2 log 71 , ) .  It remains to provide 

U 

\ ‘ 4 r  

en\ 
\\ 

a constructive proof of this conjecture. 

Fig. 16. How the backprojection changes across a VC-critical orientation. 

6)  A free edge becomes parallel to a CVC ray. At such an 
orientation, the decision of whether to add the free edge or 
the CVC ray to the backprojection may change. We will call 
such orientations VC-critical. 

Fig. 16 shows how the backprojection changes across such 
a critical orientation. 

Proposition 3: There are O( n)  VC-critical orientations. 
Proof As was shown in Section VII-A, there are O ( n )  

CVC rays in an environment that contains T L  C-obstacle 
vertices. Each of these introduces two critical orientations of 
the type previously described, given by the two free edges 
of the velocity uncertainty cone. Hence, there are O ( n )  VC- 
critical orientations. 0 

C. New Asymptotic Time Bounds 

If we denote by B,,, ( G )  the directional backprojection 
with visual constraints, and by B,,(G) the nondirectional 
backprojection with visual constraints, we have 

B,,, ( G )  = U(B,,,, ( G )  x (0) )  
0 

Proposition 4: A representation of the nondirectional back- 
projection with visual constraints, B,,, (G), can be computed 
in time O( I L ’ ( ~  + r )  logn), where c is the number of painvise 
intersections of CVC rays. 

Proof: Donald’s critical-slice method [ 121 computes the 
nondirectional backprojection in time O(n4 log 71) when there 
are O(nJ) critical orientations, by computing 0 ( n 3 )  slices 
each in time O ( n  log 71) .  For the VC-enlarged backprojection, 
the complexity of computing a slice, B,,,, (G), is O ( ( n  + 
e )  log 7 1 ) .  There are O(71) additional VC-critical orientations, 
and O( 7 ~ ~ )  additional free-edge critical orientations, but this 
does not asymptotically increase the total number of critical 
orientations since there are already O(n2)  71-graph critical 
orientations [12]. The critical orientations can be found using 
Donald’s proposed naive algorithm in time 0 ( 7 ~ ~ ) .  Hence, the 
nondirectional backprojection with visual constraints can be 

0 
Conjecture 1: A representation of the nondirectional back- 

projection with visual constraints, B7,,(G), can be computed 
in time O( n2 log n) .  

Rationale: Using an amortization techniques, Briggs has 
shown that for the nondirectional backprojection (without 
visual constraints) there are at most O ( n 2 )  changes to the 

computed in time O( n3 (71 + c )  log 71) .  

VIII. DISCUSSION 

In this section, we discuss a number of issues related to 
exploiting visual constraints in the computation of backprojec- 
tions. We first address the impact of visual constraints on the 
number of steps required for a successful plan. Following this, 
we discuss the effects of camera placement on backprojections. 
Finally, we discuss extending our algorithms to the case of 
C = R3. 

A. Single-Step Versus Multistep Plans 

The directional backprojection with visual constraints 
B, ,< , (G)  is always at least as large as the directional 
backprojection Bo(G) as defined by Erdmann [15], i.e., 
Bo( G )  C B,,,, ( G )  (and in many cases the inclusion relation is 
proper). This is illustrated in the examples of Fig. 13. Let G be 
a goal region, and R be a start region in Cvalld. A single-step 
plan is possible when R is contained entirely in &(G)  for 
some 19. Thus when R Bl, , , (G) and R $ Bo(G), single- 
step plans are possible when visual constraints are exploited, 
but not when they are ignored. This can be seen by noting the 
difference between the VC-enlarged and traditional directional 
backprojections in Figs. 13(a) and (c). 

/ , 

B. The Effects of Camera Placement 

The examples in Fig. 17 illustrate the effect of moving 
the camera within the environment. In each set of figures, 
the commanded velocity is held constant while the camera 
assumes a range of positions from the upper right to the upper 
left of the environment. 

The set of frames shown in Fig. 17(a) corresponds to 
commanded velocity direction 0 = -n/6. The square robot 
is shown in frame 1. Frame 1 is similar to Fig. 13(b). Frames 
2 and 3 differ in the location of the camera. 

The set of frames shown in Fig. 17(b) corresponds to 0 = 0. 
In frame 1, the region R is not included, because motions 
commencing in it, even if they visually comply to the CVC 
rays bounding R, may stick on the horizontal top edge of the 
obstacle. The remaining regions are bounded mostly by CVC 
rays. Note the inclusion of the vertex f .  If visual compliant 
motion begins along the CVC ray incident on f ,  it may safely 
continue and intersect the (sliding) edge E. On the other hand, 
if motion commences from a point below f ,  uncertainty cone 
constraints allow the inclusion of sliding edge E. If the CVC 
ray incident on f did not intersect E ,  that CVC ray would not 
have been included in the backprojection, as was discussed in 
Section V. 
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Fig. 17. Effect of moving the camera within the environment. 

Combinations of CM-vertex constraints and close-together 
CVC rays arising from different workspace VC rays (z and y) 
give the backprojection of frame 2. Finally, frame 3 illustrates 
a situation similar to that of frame 1, except that, in this case, 
the excluded region of the backprojection is bounded by a 
CVC ray on the right and by a free edge of the velocity 
uncertainty cone on the left. 

examples 
of Fig. 17 suggest that the topology of the VC-enlarged 
backprojection is sensitive to camera position, since CM 
vertices are computed by considering the relative positions 
of the camera and the robot. The problem of where to place 
the camera to best exploit visual constraints appears to be 
closely related to the problem of computing aspect graphs for 
an arrangement of polyhedra. The notion of an aspect graph 
was originally introduced by Koenderink and van Doorn [24]. 
Constructing the 3D aspect graph involves decomposing the 
viewing space into cells such that moving the camera within 
a cell does not change the qualitative topological structure of 
the projected image of the polyhedron, and then characterizing 
the connectivity among these cells as the viewpoint is moved 
from one cell to another. The 2D aspect graph is analogous: 
it divides the plane into viewing cells inside each of which 
the set of vertices seen by the camera does not change, and 
characterizes the connectivity among these cells. 

1) Camera Placement and Aspect Graphs: The - 

* 

The set of CVC rays that can be used to enlarge the 
backprojection depends on the geometry of the robot as well 
as the camera position, since the spatial relationship between 
the robot and the camera determines which robot vertices 
are CM vertices. Although a full treatment of this topic is 
beyond the scope of this paper, we expect there to be viewing- 
critical conjigurations and noncritical viewing regions, such 
that moving the camera within a noncritical viewing region 
does not alter the qualitative structure of the VC-enlarged 
directional backprojection. 

Conjecture 2: There exists a representation of size 
O( ( n ~ n ) ~ )  of the noncritical viewing regions. 

Rationale: It is known that in the 2D aspect graph of an 
arrangement of polygons, the noncritical regions are bounded 
by the supporting lines of the edges of the polygons. Since the 
m-vertex robot must be considered part of the arrangement 
of polygons for the purpose of computing CM vertices, and 
computation of CM vertices involves making each vertex of 
the robot coincident with each visible vertex of a polygon, 
there are effectively O(mn) polygon vertices (and therefore 
edges) to consider. These define O( ( w ~ n ) ~ )  intersections, 

0 
More thorough investigation of this issue is the subject of 

future research. Aspect graph computation is a classic problem 
in computer vision, and there is a large body of work on 

which are the vertices of the noncritical regions. 
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computaton of aspect graphs not only for arbitrary polyhedra, 
but for several classes of curved solids as well; see, for 
example, [ 191 and [33]. We expect that future work in visual- 
constraint-based planning will benefit from the application of 
aspect graph techniques to the problem of optimum camera 
placement. 

C. Backprojections for C = R3 
Here, we briefly describe a number of the difficulties that 

are encountered when extending our algorithms to the 3D case. 
The reader should note these difficulties are inherent in the 
computation of 3D backprojections, and are not introduced by 
considering visual constraints. In fact, we will show informally 
that considering visual constraints does not make the 3D 
backprojection problem computationally harder. 

I )  3 0  Velocity Uncertainty Cones: One of the constraints 
that makes a 2D implementation computationally attractive is 
the restriction that the robot and C-obstacles be polygonal, re- 
sulting in a backprojection bounded by straight line segments. 
In particular, the necessary intersections of line segments are 
easy to compute. Velocity uncertainty is simply bounded by a 
2D uncertainty cone, which encloses all possible trajectories 
from a starting configuration. 

However, in three dimensions, the velocity uncertainty 
cones are 3D cones with curved surfaces. Recall that in the 
absence of a sliding surface, the backprojection is bounded 
by the surfaces of uncertainty cones. Consider backprojection 
from a rectangular obstacle face with no other objects in 
the environment. According to Erdmann’s algorithm [ 151, 
we erect the inverted velocity uncertainty cone along each 
sticking edge, and trace the backprojection bounded by the 
intersections of the cones. However, these intersections are 
no longer necessarily straight lines, nor are the backprojection 
boundaries planar. While the backprojection may still in theory 
be constructed this way, it is less computationally attractive 
because of the more difficult geometry. 

2) Inscribed Ellipses: Another possible approach is to ap- 
proximate the goal surface by its maximal inscribed ellipse. 
This is motivated by observing that under the uncertainty cone 
model, a motion may follow any trajectory inside a cone. The 
base of the cone is a circle in the plane perpendicular to the 
commanded motion direction. In general, it projects onto an 
arbitrary planar surface as an ellipse, the ratio of whose axes is 
determined by the angles at which the target plane intersects 
the uncertainty cone. Let us refer to such an ellipse as the 
inscribed ellipse of a goal surface. Following this approach, 
we might construct the backprojection of an inscribed ellipse, 
rather than the backprojection of the polygonal target surface. 
However, the resulting planner would be incomplete, as it 
would fail to include in the backprojection some points from 
which a commanded motion would reach a point on the target 
surface but not contained in the target surface’s inscribed 
ellipse. 

3) Critical Cell Decomposition: As discussed in Section 
VI, Donald exploits the polygonal structure of the 2D back- 
projection to derive a critical-slice method for decomposing 
the velocity direction space S1 using a finite number of critical 

orientations and noncritical intervals. In three dimensions, 
two angles are necessary to specify a commanded motion 
direction, say 4 and 6’ using the convention of spherical 
coordinates. Thus, the space of commanded motion directions 
is J = [0, 7 r )  x [O. 27r). To apply Donald’s technique here, 
J must be decomposed into cells, inside each of which 
the topology of the backprojection does not change. The 
boundaries of the cells define critical orientations. 

However, since the backprojection is no longer polyhedral, 
determining when changes in topology occur is considerably 
more difficult. Furthermore, although in two dimensions a 
backprojection polygon is closed by the intersection of two 
rays, a 3D backprojection volume is, in general, not closed 
by the intersection of planes, so it is not obvious exactly 
how the topology changes across adjacent critical cells. We 
speculate that there exists an algebraic representation of the 
critical orientation criteria, in which case, an algebraic cell 
decomposition 131, [ 1 11 could be used to determine the critical 
cell boundaries. 

4 )  Computational Complexity: Without a complete compu- 
tational complexity analysis, we make the following conjecture 
about the complexity of considering visual constraints in three 
dimensions. 

Conjecture 3: Considering visual constraint surfaces in the 
3D directional backprojection does not increase the asymptotic 
time complexity of computing it. 

Rationale: The operations necessary to support VC sur- 
faces are also necessary for supporting the basic algorithm. 
Ruled VC surfaces behave like frictionless obstacle surfaces 
in that they do not change with motion direction, and like 
uncertainty cone surfaces in that they are free constraint 

0 surfaces not supported by a physical object surface. 

IX. CONCLUSIONS 

In this paper, we have introduced visual constraint surfaces 
as a mechanism to effectively exploit visual constraints in the 
synthesis of uncertainty-tolerant robot motion plans. Visual 
constraint surfaces can be used to effect visual guarded and 
visual compliant motions. By deriving a configuration space 
representation of visual constraint surfaces, we were able to in- 
clude visual constraint surfaces as boundaries of the directional 
backprojection. We described an implemented backprojection 
planner for C = R2 based on Donald and Canny’s algorithm 
1121. 

By examining the effects of visual constraints as a function 
of the direction of the commanded velocity, we were able to 
determine new criteria for critical orientations, i.e., orientations 
at which the topology of the directional backprojection, includ- 
ing visual constraint surfaces, might change. We presented 
an algorithm to compute the nondirectional backprojection 
modified to include visual constraint surfaces. 

Finally, we have discussed a number of issues that are 
related to the inclusion of visual constraint surfaces in back- 
projections, including multistep versus single-step plans, the 
problem of optimal camera placement, and extending the 
backprojection algorithm to the 3D case. 
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