
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 1 I , NO. I . FEBRUARY 1995

Exploiting Visual Constraints in the Synthesis
of Uncertainty-Tolerant Motion Plans

Armando Fox and Seth Hutchinson

Abstract- We introduce visual constraint surfaces as a mech-
anism to effectively exploit visual constraints in the synthesis
of uncertainty-tolerant robot motion plans. We first show how
object features, together with their projections onto a camera
image plane, define a set of visual constraint surfaces. These
visual constraint surfaces can be used to effect visual guarded
and visual compliant motions (which are analogous to guarded
and compliant motion using force control). We then show how
the backprojection approach to fine-motion planning can be
extended to exploit visual constraints. Specifically, by deriving a
configuration space representation of visual constraint surfaces,
we are able to include visual constraint surfaces as boundaries of
the directional backprojection. By examining the effect of visual
constraints as a function of the direction of the commanded
velocity, we are able to determine new criteria for critical velocity
orientations, i.e. velocity orientations at which the topology of the
directional backprojection might change.

1. INTRODUCTION
0 PERFORM effectively in real-world settings, robots T must be able to plan and execute tasks in the presence

of uncertainty. Typical sources of uncertainty in a robotic
work cell include limited sensing accuracy, errors in robot
control, and discrepancies between geometric object models
and physical objects (including the parts to be manipulated
and the robot itself). Because of this, the application of
robotic technology to manufacturing problems has typically
been restricted to situations in which uncertainty can be
tightly controlled (for example, by using specialized fixturing
devices).

The problems associated with uncertainty in robotic systems
have long been the subject of research in the robotics commu-
nity. A number of planning systems have been developed that
characterize uncertainty by systems of constrained variables
[6], [22], [32], [39]. These variables are propagated through
transformations that represent the effects of actions on uncer-
tainty in the planner’s world description, providing the planner
with worst case estimates at each step of the plan. There are
two primary disadvantages to this approach: 1) the planner
always assumes the worst, propagating upper bounds even
when actual bounds are likely to be much tighter, and 2) the
planner must know U priori the effects of manipulation actions
and sensing on the uncertainty in the description of the work

cell. There is no mechanism for revising behavior at execution
time to account for dynamically occumng uncertainties.

An alternative to a priori consideration of worst case error
is to use sensory feedback to adapt task execution to the
actual state of the world that the robot encounters. Force-
based control can be used to effect guarded [42] and compliant
motions [28], [31], [35], [41], making assembly actions robust
by exploiting physical constraints imposed on motion by the
geometry of the workspace. To date, the most successful
planning systems that use this approach comprise the preimage
family of planners [13], [15], [26] , [27]. The key to the
preimage planning paradigm is the transformation of physical
constraints into geometric constraints, which can be expressed
as C-surfaces, i.e., sets of points in the configuration space
where the manipulator makes contact with a physical surface.
Thus, equipped with a set of equations that govern motion
and friction in the configuration space, preimage planners
are capable of developing motion plans that are tolerant of
uncertainties in the manipulator’s position (represented by an
error ball in the configuration space), its trajectory (represented
by an error cone), and even in part dimensions (represented
by added dimensions in the configuration space [131, [141).

Informally stated, a preimage of a goal is the set of points
from which a commanded motion is guaranteed to reach and
terminate recognizably in the goal. Because preimages are
often difficult to compute, Erdmann [151 introduced buck-
projections as a means of usefully approximating preimages
by separating goal reachability from goal recognizability.

The primary limitation of force control is that it can only
be used to constrain motion along directions normal to the
C-surfaces. Position control must be used to control motions
in directions tangent to C-surfaces. Therefore, hybrid posi-
tiodforce control is not sufficient when the exact manipulator
and goal positions are not known in the dimensions of position
control. As an example, suppose that the robot’s task is to
insert a peg into a hole in a block, and that the position of the
hole is not precisely known. The insertion cannot proceed until
the peg is directly over the hole; but this cannot be achieved
using either position control (since the exact goal position is
not known), or force control (since force control can only be
used to constrain motion normal to the block surface).

Manuscript received October 19, 1992; revised June 28, 1993. This work One way to cope with the limitations of hybrid
to the was presented in part at the IEEE Intemational Conference on Robotics and

Automation. This work was supported by the National Science Foundation
under Grant IRI-9110270.

The authors are with The Beckman Institute for Advanced Science and
Technology, the Department of Electrical and Computer Engineering, Univer-

force’position
control servo loop. If the geometry of the imaging process is
known, then the task geometry can be used to constrain the
remaining degrees-of-freedom by using visual servo control.
In recent years, the integration of computer vision with robot

is to add vision

sity of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.
IEEE Log Number 9214697.

1@42-296X/95$04.00 0 1995 IEEE

FOX AND HUTCHINSON: EXPLOITING VISUAL CONSTRAINTS IN SYNTHESIS OF UNCERTAINTY-TOLERANT MOTION PLANS

motion control has steadily progressed, from early look and
move systems in which vision was used to recognize and
locate an object prior to its manipulation [36], [37], to current
systems in which visual feedback is incorporated directly
into the control loop [2], [18], [30], [38], [40]. This recent
ability has made sensor-based robotics useful for a number
of tasks where sensorless manipulation had previously failed,
for example, in welding [l], [lo], [23]. To date, however,
the corresponding motion planning problem has not been
addressed. Thus, even though visual servo control systems
are now available, there is no motion-planning system that is
capable of exploiting such a control system.

In this paper, we present a geometric motion planner that
exploits visual constraints in the synthesis of uncertainty-
tolerant motion plans. Specifically, we extend the preimage
formalism to exploit visual constraints. In Section 11, we
introduce the concept of visual constraint surfaces, which are
generated by projecting workspace features onto the image
plane of a fixed camera [21]. A visual constraint surface can be
used to constrain visually controlled motions in the same way
that physical surfaces can be used to constrain force controlled
motions. In Section 111, we show how visual constraint surfaces
in the workspace are mapped to configuration space constraint
surfaces for the special case of C = R2.

In Section IV, we review preimages [27], backprojections
[151, and algorithms for the construction of backprojections
[12]. In Section V, we show how the directional backpro-
jection, i.e., the backprojection with respect to a specified
velocity, can be extended to exploit visual constraint surfaces.
In particular, we discuss our implemented backprojection
algorithm (which extends the plane-sweep algorithm presented
in [12]), and evaluate the added computational complexity
of considering visual constraint surfaces. By allowing vi-
sual constraint surfaces to be included as boundaries of the
backprojectipn, we can often significantly increase the size
of the backprojection, as illustrated in Fig. 13. Following
this, in Sections VI and VII, we discuss the nondirectional
backprojection, and show how it must be modified to exploit
visual constraints. In Section VII, we discuss a number of
related issues, including multistep versus single-step plans,
the problem of optimal camera placement, and extending the
backprojection algorithm to the 3D case. *

11. A GEOMETRIC SPECIFICATION FOR VISUAL CONSTRAINTS

This section introduces visual constraint surfaces, visual
guarded motion, and visual compliant motion. Although the
planning algorithms subsequently discussed will be imple-
mented in configuration space (C-space), this section will show
how visual constraint surfaces are developed in the workspace.
Their C-space representation is deferred to Section 111.

A. Visual Constraint Surfaces

Consider a workspace containing a number of solid objects
and a fixed camera. If the imaging process is modeled by
perspective projection [20], projection rays from each point
in the workspace converge on the camera focal center. In
general, any one-dimensional object feature will project onto

Fig. 1 . Ruled VC surface generated by a curved 3D edge.

a planar curve on the camera image plane. We will refer to the
projection of an object feature onto the camera image plane as
an image feature. An object feature is said to be unoccluded
if no projection ray emanating from that feature intersects the
interior of any other object or the robot. Intuitively, this means
that nothing is blocking the camera's view of the feature.
In this paper, the only one-dimensional object features that
will be considered are the 3D edges of objects. Note that for
the special case of polyhedral objects, all image features are
straight line segments.

Consider a 3D edge defined by the parametric space curve
Z (T) and its corresponding image feature defined by the
planar parametric curve .'(T) . The projection equations relating
2 (~) and .'(T) depend only on the position and orientation
of the camera and a set of camera parameters, e.g., the focal
length of the lens. Assume that the image plane is defined
with origin at ro and local coordinate system specified by the
orthonormal vectors I, J. The normal to the image plane is
specified by K = I x J . Then, for the case of perspective
projection, the projection equations relating Z (T) and .'(T)

are given by:

where Df is the distance from the image plane to the center
of projection of the camera, i.e., the focal length of the lens.
These parameters can be obtained by calibration procedures
described in [9]. Once they are derived, if the camera remains
fixed (as we assume), the same projection equations can be
used to compute the image-plane coordinates of any image
feature, given the world coordinates of an object feature.

A visual constraint (VC) surface is a ruled surface S(T, A)
bounded by Z (T) , .'(T), and the rays joining their respective
endpoints, as in Fig. 1. In the special case of polyhedral
obstacles, all image features are straight line segments, so that
the VC surfaces are polygons. A VC surface is defined by

S(T, A) = 2 (T) + A(Z(7) - .'(.)). (2)

Recall that a ruled surface is generated by a family of lines
[17]. For S(T, A), a particular generating line is obtained for
each valid value of T . We will refer to such a line as a
generating line of S(T, A), or simply a generating line. For
perspective projection, each generating line is a projection ray
through the center of projection and the image plane point
.'(r).

5X IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. I I . NO. I . FEBRUARY 1995

Note that a visual constraint surface does not intersect any
obstacles. This is because a necessary condition for an edge to
have a projection on the camera image plane is that the edge
not be occluded. Similarly, if only a part of a particular 3D
edge is visible (perhaps the rest of the edge is occluded by
another object), only the visible part will have a projection on
the image plane, so that the resulting surface will not intersect
any obstacles.

1) Visual Compliant Motion: Compliant motion has been
exploited in various motion planning and execution strategies
[14], [16], [27], [28]. During compliant motion, a physical
surface is used to constrain the motion of a robot along one or
more degrees-of-freedom [28], [3 11, [35], [41]. For example,
sliding motion along a surface might be achieved by ensuring
that some constant force be maintained in the direction normal
to the surface.

We define visual compliance as compliant motion along
a (virtual) VC surface, such that the manipulator's motion
is constrained to always remain in contact with a particular
generating line of the VC surface. Visual compliance can be
achieved by means of a closed-loop visual servo-system, as
described in [8], [9].

2) Visual Guarded Motion: We define visual guarded mo-
tion analogously to guarded motion using physical surfaces, in
which the robot moves until force feedback indicates contact
with a physical surface [42]. We say that the force feedback
provides a termination condition for the motion. VC surfaces
can be used for visual guarded motion; that is, the manipulator
can move along a trajectory that intersects a VC surface and
be instructed to stop when this intersection occurs. This is
possible because the intersection is a visually observable event.

Since VC surfaces are virtual rather than physical, the
motion planner also has the option of ignoring them, in contrast
to the force-based approach, which must explicitly consider all
physical surfaces on which sticking may occur [15].

111. VISUAL CONSTRAINTS IN TWO DIMENSIONS

In this section, we describe the computation of visual
constraint rays in the case of a 2D workspace populated by

. polygonal obstacles. We begin by discussing the construction
of visual constraint rays in the workspace, which is a special
case of the formalism developed in Section 11. We then discuss
the selection of robot features that will be used by the visual
servo-system. Following this, we describe how to map visual
constraint rays into the C-space C = R2. Finally, we discuss
the time complexity of the algorithms presented in this section.

A. Workspace Visual Constraint Rays

In the case of a 2D workspace, the camera is a one-
dimensional sensor positioned in the plane. Using perspective
projection, all projection rays converge on the camera projec-
tion center. We assume that if an object vertex is unoccluded,
i.e., a projection ray from that vertex to the camera focal
point intersects the interior of no workspace obstacle, then the
projection of that vertex in the camera image can be located
by the vision system. Workspace VC rays can be computed by

Fig. 2.
vertices.

Construction of workspace VC rays from unoccluded obstacle

CMVorbx

Fig. 3. Different positions of the polygonal robot give different CM vertices.

extending rays from unoccluded workspace obstacle vertices
to the camera projection center, as shown in Fig. 2 .

B. Selecting Robot Features for Visual Servo Control

In a 2D workspace, visual compliant motion is effected by
moving a particular robot vertex so that it remains in contact
with some VC ray emanating from a workspace object vertex.
This raises the question of which vertices of the robot should
be used in visual compliant motions.

If the robot is a simple polygon, its projection on the camera
image plane is a line segment whose endpoints represent the
two furthest-apart robot vertices simultaneously visible to the
camera. Note that there may be other robot vertices that project
to points on the line segment; however, for the purpose of
visual compliant motion, we assume that the vision system can
only robustly distinguish in real time the two vertices whose
projections are the endpoints of the image plane line segment,
i.e., the silhouette of the robot. This restriction could be lifted
if the vision system were capable of robustly distinguishing
other unoccluded vertices in real time.

We will refer to the two robot vertices that project to the
endpoints of the line segment as CM vertices, to indicate that
they are the only robot vertices suitable for effecting compliant
motion along a VC ray. Note that the particular robot vertices
that are CM vertices can change with the position of the robot.
Fig. 3 shows the same robot in two different positions for
which the CM vertices are different. In certain nongeneral
configurations of the robot, two robot vertices may lie along
the same projection ray. In such cases, we may arbitrarily
select one of these as a CM vertex. Thus, for any specified
position of the robot, we will obtain two CM vertices whose
projections are the endpoints of the image plane line segment
representing the robot. There cannot be only one CM vertex

/
I

/

FOX AND HUTCHINSON: EXPLOITING VISUAL CONSTRAINTS IN SYNTHESIS OF UNCERTAINTY-TOLERANT MOTION PLANS 59

m
Fig. 4. The spatial relationship between the robot vertices

workrpcevcw,

cvcw#

B-Ir*

B-

Fig. 5.

unless the robot is itself a line segment and is collinear with
a projection ray.

Construction of two CVC rays from a single workspace VC ray.

C. Configuration Space Representation of Visual Constraints

Visual constraint rays in the workspace give rise to C-space
visual constraint rays (CVC rays). In mapping workspace
VC rays to CVC rays, we must allow for either of the CM
vertices to be moved compliantly along the workspace VC
ray. Suppose that a particular vertex a0 of the robot is taken as
the origin of the robot’s internal coordinate frame to compute
a representation of the C-space, C. Since trajectories in C
will specify the motion of vertex a0 among the C-obstacles,
we must find an appropriate representation for compliant
motion of an arbitrary robot vertex aj along a VC ray.Since
we are considering the case where C = R2, the spatial
relationship between a0 and aj is fixed. Specifically, if for
some configuration f, the world coordinates of a0 are given by
the vector Zo(4, then the world coordinates of uj in the same

‘ configuration are given by Zj($ = Z O (~ + (Zj(0) - Zo(0)).
Fig. 4 illustrates this relationship for vertices a0 and al .

Let e: be a VC ray emanating from a workspace obstacle
vertex bi, and let aj be a CM vertex of the robot when the
robot is positioned such that aj coincides with b;. Then, as the
robot moves compliantly, maintaining contact between aj and
e:, vertex a0 will move along a straight line trajectory parallel
to e% but displaced from it by &(0) - Zj(0). We construct a
CVC ray evc in C, whose endpoints are the endpoints of e:
displaced by Zo (0) - Zj (0). Motion of a0 (the reference vertex)
along evc corresponds to visual compliant motion of vertex aj

along e:. Similarly, visual guarded motion of a0 terminating
on eve corresponds to visual guarded motion of aj terminating
on e z , which is a visually observable event. The construction
of CVC rays using this technique is illustrated in Fig. 5.

1) Intersection of CVC Rays with C-Obstacles: When a CVC
- ray intersects a C-obstacle, visual compliant motion cannot be

*

wadrsl#rc vc lay - - . - - . c-SpaceVCray

Fig. 6.

effected along the portion of the CVC ray that lies inside of the
C-obstacle, since doing so would cause the robot to overlap a
workspace obstacle. In this case, we must truncate the CVC
ray at those points where it enters CB, retaining only those
segments of the CVC ray that lie outside of B (we will use
the notation CBi to indicate a particular C-obstacle, and CB
to represent the union of all C-obstacles). In Fig. 6, the CVC
ray constructed from the workspace VC ray e: intersects the
interior of C-obstacle CBI. That part of the CVC ray that lies
outside of CB includes two line segments: el is the segment
between the camera and artificial vertex b3 on edge E, e2 is
the segment from artificial vertex b2 to artificial vertex b l . In
this example, only the segments el and e2 are included in the
set of CVC rays.

2) Intersection of Multiple CVC Rays: Although workspace
VC rays intersect only at the camera projection center, two C-
space VC rays may intersect at a point other than the camera
projection center. Fig. 7 shows one example of intersecting
CVC rays. Since the CVC rays corresponding to a single
workspace VC ray are parallel, the intersecting CVC rays can
not have originated from the same workspace VC ray. The
physical interpretation of the intersection of two CVC rays
is a change from executing compliant motion of vertex ai
along workspace VC ray e:L to compliant motion of vertex
aj , j # i along workspace VC ray e E l , k # 1. For example,
such an intersection point might correspond to a change from
compliant motion of the top right vertex of the square robot
along VC ray EEl, to compliant motion of its bottom-left
vertex along e z 2 .

3) Algorithmic and Complexity Issues: The C-space repre-
sentation of the VC rays can be computed by using two
successive plane-sweep algorithms. The first constructs all
of the CVC rays, and the second is used to truncate these
CVC rays, as described in Section 111-C-1). Plane-sweep
algorithms comprise a general class of algorithms that operate
by stepping through a queue of geometrically interesting or
critical events, and performing some local processing at each
event in order to construct a global solution to some input
problem. Conceptually, a line is “swept across” the plane,
stopping at the critical events. At any time, the sweep-line
divides the space into two half-spaces, such that the solution
in one half-space has been computed and will not be affected
by the computation of the solution in the other, half-space.
Further, between any two critical events, the solution that is

A CVC ray may intersect the interior of CB.

60 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. I I , NO. I , FEBRUARY 1995

Fig. 7. Intersection of two CVC rays.

being constructed does not change in a qualitative way.
The input to a plane-sweep algorithm is an arrangement of

geometric objects and the output is some desired operation on
the objects. Plane-sweep algorithms can be used, for example,
to compute the intersection points of an arrangement of line
segments or the union of an arrangement of polygons [34]. The
advantage of a plane-sweep algorithm over a naive algorithm
is usually reduced-time complexity. As an example, a naive
algorithm for computing the intersection points of 71 line
segments runs in O (n 2) time, but a plane-sweep algorithm can
compute them in O((n + c) log 71) time, where c is the number
of intersection points. In the worst case c = O (n 2) , but in
practice, it is usually small and the plane-sweep algorithm is
more efficient than the naive algorithm.

The initial set of CVC rays can be constructed by a variant
of the traditional plane-sweep algorithm in which the sweep-
line is a half-line that is rotated about the projection center
of the camera. Let P represent the projection center of the
camera. Then anchor a half line at P, and sweep this half
line from H I to 0 2 , where 81 And H2 are the angles at which
the sweep-line anchored at P intersects the two extreme
points of the line segment that defines the camera image
plane. The obstacle vertices define the set of events at which
the sweep stops. By properly maintaining the status of the
set of intersections of the sweep-line with obstacle edges,
it is possible to determine whether each visited vertex is
unoccluded. Making this determination and performing the
processing necessary to update the status of the sweep-line
requires O(1ogn) operations at each vertex. Since there are
O (T L) vertices, determining the set of unoccluded vertices
requires O(71 log 71,) operations. This is a slight variation of
the algorithm for computing visibility graph edges described
in [25].

In addition to determining the set of unoccluded vertices,
we must also determine which vertices of the robot are CM
vertices for each unoccluded obstacle vertex. In general, for a
robot with ~ I L vertices this can be done by a naive algorithm
using O (m) operations for each obstacle vertex. However, we
can interleave the process of determining the CM vertices with
that of determining the set of unoccluded vertices by making
the following observation. The set of CM vertices changes
only when the rotational sweep-line becomes parallel to an

edge in the convex hull of the robot. In other words, as the
sweep-line rotates, the same two robot vertices will be the
CM vertices until the sweep-line becomes parallel to an edge
in the convex hull of the robot. Therefore, by modifying the
rotational sweep so that it also stops at orientations parallel to
edges in the convex hull of the robot, we can simultaneously
compute the set of unoccluded obstacle vertices and the two
CM vertices for each unoccluded vertex. The complexity of
the resulting algorithm is O (7 n log 711) to compute the convex
hull of the robot, and O((7rr + 1 1) log 71) to perform the sweep.
If we assume that 71 > 711, the algorithm requires O(n logn)
operations.

Truncating the CVC rays can also be accomplished by a
plane-sweep algorithm. Here, a line is swept across the plane
in the direction perpendicular to the camera image plane. The
events are the vertices of C-obstacles and the intersections
between C-obstacle edges and CVC rays. Such an algorithm
requires O((71 + c) log 7)) operations, where e is the number
of intersections of CVC rays with C-obstacle edges.

Iv . PREIMAGES AND BACKPROJECTIONS

In this section, we provide a review of preimages and
backprojections. We begin by reviewing the preimage for-
malism of LozanePkrez, Mason, and Taylor [27]. Following
this, we present a review of backprojections [151, including a
discussion of issues related to goal recognizability. Finally,
we describe the algorithm of Donald and Canny [12] for
computing a directional backprojection in O (n log T I) time
(where 71, is the number of vertices of the C-space obstacle
region). Readers that are familiar with this work may wish to
skip this section.

A. Preimage Planning

Lozano-Perez, Mason, and Taylor [27] present a formalism
for the automatic synthesis of fine-motion strategies using
preimages. Informally stated, a preimage for a specified goal
region is a set of points from which a commanded motion is
guaranteed to terminate recognizably in the goal region. The
main advantage to the preimage formalism is that it allows
the fine-motion planner to explicitly consider uncertainties in
position and control.

In [27], position uncertainty is modeled by an error ball,
Bc.p(p), in the C-space, centered on the actual position p.
Velocity uncertainty is modeled by an uncertainty cone, whose
vertex angle represents the maximum directional deviation
between the commanded velocity and the actual velocity. If
a position p 0 lies within the error ball centered on measured
position p:, then p;*, is said to be consistent with po. Intuitively,
this means that the sensor might “mistakenly” measure p o
as p;. A similar definition holds for measured versus actual
velocity vectors.

The velocity uncertainty cone plays a key role in the
computation of preimages (and, as will be seen below, in the
computation of backprojections). Specifically, both preimages
and backprojections may include in their boundaries free edges
(also called free rays). A free edge is a line segment that is
parallel to an edge of the inverted velocity cone, erected at

/
I

FOX AND HUTCHINSON: EXPLOITING VISUAL CONSTRAINTS IN SYNTHESIS OF UNCERTAINTY-TOLERANT MOTION PLANS 61

I I
b

the proof do not generally occur in practice led Erdmann to
conjecture without proof that in an environment with a known
finite number of constraints, preimages should be computable.
Canny has shown that this is indeed the case when the set of
possible robot trajectories has a finite parameterization, and
the set of feasible trajectories is a semialgebraic subset of
the parameter space [7]. Canny’s approach is to cast the fine
motion planning problem as a decision problem in the theory
of the real numbers, and to then use quantifier elimination
algorithms (see, e.g., [111) to derive parametric semialgebraic
sets that are preimages. Backprojections from recognizable
goal regions also constitute valid preimages [15], [26]. Such
backprojections are the topic of the next section.

Fig. 8. Modifying the goal region to account for position uncertainty.

some C-obstacle vertex. For example, in Fig. 8, the top two
boundary edges of the backprojection (outlined in light dashed
lines) are free edges.

The formal definition of a directional preimage Pe (G) is as
follows. Let G be a goal region in Cvalid (where Cvalid is the
set of valid configurations in the configuration space C). A
motion command M = (GO, TC), consists of a commanded
velocity .‘e (which is considered to be a unit vector with
orientation e), and a termination predicate TC, which is used
to determine when the motion has achieved the goal. The
preimage of G for motion M is defined as a subset of points,
R C Cvalid, such that if M commences from any point in
R, TC will eventually return true, at which point the motion
will terminate in G. A maximal directional preimage is the
largest possible preimage relative to a given motion direction
and goal region.’

A preimage planner works by backward-chaining from the
goal region G to the C-space region I in which the initial
configuration lies. If the backward-chaining process terminates
successfully, the result is a sequence of directional preimages
Pl, P2, . . . , P, such that: a) Pi is the directional preimage of
Pi-1 relative to the commanded velocity Go, and termination
condition TCi, b) PI is the directional preimage of G, and

~ c) I c P,. The reverse sequence of motion commands
M,, M,-I,. . . , M I , with Mi = (.‘ee,, TCi), is the generated
r-step motion strategy guaranteed to recognizably reach the
goal configuration from the initial configuration.

Mason has shown that the LMT approach of preimage
backchaining is bounded complete, i.e., if a solution with
bounded number of motions exists, the LMT preimage
backchaining method will find it, and that it suffices to
consider directional preimages as subgoals in the recursive
backchaining process [29]. These results, however, do not
imply that preimages are computable. In fact, Erdmann has
proven by a reduction from the halting problem, that, in
arbitrary environments, preimages and backprojections are
uncomputable [151. That the recursively defined constraints in

’ This explanation paraphrases Latombe’s discussion of preimages [25],
which also presents the relevant equations and formal definitions of the

* termination predicate.

B. Backprojections

A major problem in computing preimages is that there are
many circumstances under which a real termination predicate
TC may not be able to reliably detect entry into the goal
region. There are two primary reasons for this: uncertainty
in sensing and limitations on the amount of information
available to the termination predicate. Because of these dif-
ficulties, Erdmann introduces backprojections [151 as a means
of approximating preimages. Essentially, a backprojection is
a preimage without a termination predicate; that is, a back-
projection is the set of all points from which an appropriate
commanded velocity is guaranteed to enter the goal, regardless
of whether entry into the goal is recognized. The lack of
a termination predicate makes backprojections weaker than
preimages, but backprojections are often easier to compute
than preimages, and are appropriate for use in certain planning
problems.

1) Uncertainty in Sensing: Fig. 8 depicts a rectangular goal
region G. Its directional backprojection consists of the rect-
angular region G together with the region enclosed by light
dashed lines. A trajectory with a commanded velocity straight
down originating in the backprojection is guaranteed to enter
G. Due to position sensing uncertainty, modeled by an error
disk of radius cpr only points inside the rectangle R can be
unambiguously sensed as being in the goal. This is because, for
actual positions in G but not in R, there exists an interpretation
of the measured position p* that is not in G. Put another way,
because of uncertainty, we can equivalently regard the robot as
a disk of radius cp and assume perfect sensing, and require that
the disk be entirely contained in G. This implies that the center
point of the disk must be at least a distance eP from every edge
of the goal region. However, if the reduced goal region R had
been used as a base from which to backproject (resulting in
the directional backprojection enclosed by bold dashed lines),
all of the points in the goal region could be unambiguously
determined to be in the goal region, since they are all at least
cp distant from any possible nongoal interpretation.

Erdmann introduces a method for constraining goal sets so
that they will be suitable bases for backprojection, but does not
formalize all the requirements. Essentially, he begins by choos-
ing a subset of the goal that is guaranteed to be recognizably in
the goal, given position sensing uncertainty, and backprojects
from this “foundation.” The resulting backprojection is then

62 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION. VOL 1 I . NO. I , FEBRUARY 1995

iteratively enlarged by adding those regions of the goal that are
either recognizably in the goal, or from which any trajectory
will recognizably enter the existing backprojection region.
Although an informal example is given for the translating
polygonal robot case, no algorithm is presented for this case
or in general. Latombe, et al. [26] have formalized the idea
of restricting the goal by constructing goal kernels (subsets of
the goal for which recognizability is guaranteed), and by using
sticking edges as goal regions. In both cases, since termination
in the goal is guaranteed, such backprojections constitute valid
preimages.

2) Limitations of the Termination Predicate: Erdmann dis-
cusses three possibilities for the termination predicate: no
sense of history, no sense of time, and no sense of history
or time. A termination predicate without history cannot rely
on information regarding where the robot has been in the past
to disambiguate a current position reading p*. For example,
suppose there are two goal regions, and the measured position
p* is consistent with being in either one. Knowing the set of
past positions of the robot might be sufficient to determine
which goal is indicated by the current position reading. That
is, one of the two interpretations might be inconsistent with
the sensor history despite being consistent with TI*. The
termination predicate without history may not rely on past
sensor readings in this way.

Similarly, the termination predicate without sense of time
cannot determine which of several consistent interpretations
of p* is correct by considering the velocity of the robot and
the elapsed time since leaving the initial position.

The motivation for considering a termination predicate with
neither history or time is that for a given commanded motion,
the starting position & and the elapsed time since starting the
motion will not be known until runtime. Thus, it is impossible
for the planner to develop a complete strategy based on these
parameters. This is a byproduct of the decomposition of the
robot motion problem into separate planning and execution
stages. In this paper, we consider only termination predicates
with no sense of history or of time.

C. Computing Backprojections in C = R2
Donald and Canny have implemented a plane-sweep algo-

rithm for computing backprojections of polygonal regions for
the case C = R2 [12]. The algorithm works by sweeping
a line across the plane in the direction opposite that of the
commanded velocity. The sweep-line stops at events that are:
(I) vertices of C-obstacles, (2) vertices of the goal region,
(3) the intersection of two free edges, (4) the intersection of
a free edge with a boundary of the goal region, and (5) the
intersection of a free edge with an edge of a C-obstacle. In
each case, the backprojection is extended appropriately, using
only local decision criteria.

Fig. 9 illustrates the operation of the algorithm on a simple
example. The backprojection being built is enclosed by bold
lines. The commanded velocity is straight down, with the
illustrated uncertainty cone. In each frame, a new vertex is
considered and appropriate edges indicated by arrows are
added to the backprojection. When the sweep finishes, the

‘

Commanded
Velocity h5

Fig. 9. Plane-sweep of a simple 2D polygonal environment.

directional backprojection has been computed. The vertices
are numbered in the order in which they are encountered by
the sweep. Vertices 1 and 2 appear to be on a horizontal line,
so that the order in which they are encountered is ambiguous.
In such cases, a small perturbation may be introduced so that
vertices 1 and 2 are no longer on the same horizontal line, or
the vertices may be sorted in planar-lexicographic (x, ?])-order.

Donald shows [12] that the algorithm is correct provided
that the environment has a bounded number of vertices, and
that the friction cone is larger than the velocity uncertainty
cone. (This latter criterion is necessary because without it, the
algorithm would not be able to rely only on local information
to determine how to continue the backprojection.)

v. THE EFFECT OF VISUAL CONSTRAINTS
ON THE DIRECTIONAL BACKPROJECTION

In this section, we show how the backprojection algorithm
of Donald and Canny can be modified to exploit visual
constraints. We will refer to a backprojection that includes
CVC rays as a VC-enlarged backprojection, and we will
denote a VC-enlarged backprojection by B,,, (G). We begin
by describing the new event types that must be considered
by the plane-sweep algorithm. We then present two exam-
ples of backprojection continuation at such events. Following
the examples, the formal decision criteria for determining
whether to include a CVC ray in the backprojection boundary
are presented. We then discuss the time complexity of the
modified directional backprojection algorithm. Finally, we
present examples of IlvcG(G) for C = R2 computed by our
implementation of the modified algorithm.

A. New Events for the Plane-Sweep Algorithm

The first step in modifying the Donald and Canny directional
backprojection algorithm to exploit CVC rays is to determine
the new events that must be considered during the plane sweep.
When CVC rays are included, there are three new types of
events that must be considered:

1) The intersection of a CVC ray with a C-obstacle edge
(or a C-obstacle vertex);

2) The intersection of a CVC ray with a free edge of the
inverted velocity uncertainty cone;

3) The intersection of two CVC rays.
When a CVC ray intersects a C-obstacle edge, we create

an artificial vertex at the intersection point. If a particular C-

FOX AND HUTCHINSON: EXPLOITING VISUAL CONSTRAINTS IN SYNTHESIS OF UNCERTAINTY-TOLERANT MOTION PLANS 63

obstacle vertex has a CVC ray incident on it, that vertex is
marked to indicate this fact, and the equation of the incident
CVC ray is attached to it. Thus, only intersections of CVC rays
with C-obstacle vertices will be considered in the remainder
of the paper.

In the worst case, there will be O (n) new artificial vertices
for the CVC rays that intersect C-obstacle edges. There
are O(n2) intersections of free edges with CVC rays, but
during the construction of the backprojection, only the first
intersection of a free edge with a CVC ray is considered.
Therefore, the number of new events of this type that must
be considered by the algorithm is O(n) .

Finally, there are, in the worst case, O(n2) pairwise inter-
sections of CVC rays. To see this, consider that the intersection
of two CVC rays occurs when the two CM vertices of the robot
are simultaneously in contact with two distinct workspace VC
rays, say and ez j . Such an intersection point can be
created by positioning one CM vertex of the robot on e Z i ,
and then moving the robot compliantly along this ray until the
remaining CM vertex contacts e z j .

Thus, the number of events considered by the modified
plane-sweep algorithm is O(n + c), where c is the number
of intersections of pairs of CVC rays.

W

B. Example of Backprojection Continuation

Before presenting the formal decision criteria for the new
events, we present the following two examples. These ex-
amples show how visual constraint surfaces can be used
to bound the backprojection, which is made possibly by
exploiting visual compliance (which is analogous to physical
compliance).

Consider an obstacle vertex b, with incident C-obstacle
edges eL and eL- l , and incident CVC ray eve, as shown in Fig.

The commanded velocity is straight down. Edge e,-l has
already been added to the backprojection, and it forms the left
edge of the current backprojection boundary. The algorithm
must decide whether to continue the backprojection along e,,
ever or the free edge of the inverted velocity uncertainty cone

Intuitively, the algorithm tries to make the backprojection
as large as possible. Suppose e, is a sliding edge. Then
choosing it will always result in the maximal backprojection
because if either eTic or er?, made the backprojection larger,
it would intersect the interior of the C-obstacle bounded by
e,. Conversely, suppose e, is a sticking edge. In this case, a
simple comparison of the orientations of evc and eev suffices
to determine which ray should be chosen, namely, the one that
forms the larger angle with the direction perpendicular to the
commanded velocity.

When a free edge intersects a CVC ray, it is not always
the case that the CVC ray should be added to the boundary
of the backprojeciton. Figs. 11 and 12 illustrate an example
of such a case. Suppose that the motion begins at the point
R with a commanded velocity straight down. When the robot

eev.

.

*Although CVC rays are not necessarily incident on C-obstacle vertices,
we may assume this without loss of generality since artificial vertices are
introduced where CVC rays intersect C-obstacle edges. -

F m constnint nypvbudy dasctsd
PMue1w- ty-e

Fig. 10.
vertex.

intersects the CVC ray eocr the execution system equipped
with visual feedback will begin visual compliant motion along
the ray toward the goal. However, if visual compliant motion
continues until the C-obstacle is contacted, the motion may
not reach the goal. Instead, somewhere along evc, between
points p and q, the execution system must resume motion in a
downward direction. But the region of C-space in which this
change of direction must occur is a free-space region, so that
position sensing uncertainty becomes a problem. Specifically,
since visual feedback cannot be used to determine where
the robot is positioned along a projection ray, the robot
will comply to evc and leave the backprojection region,
continuing until contact is made with the C-obstacle upon
which evc terminates. Therefore, we cannot guarantee that
the single commanded motion would reach the goal, and we
conclude that the CVC ray in this example should not be a
backprojection boundary. We note that it would be possible to
allow for the use of position sensing to detect when the robot
has reached point p. However, determining that p has been
reached is essentially equivalent to the goal recognizability
problem, and therefore greatly complicates the computation
of the backprojection (indeed, it was this difficulty that led
Erdmann to separate goal recognizability and goal reachability
in his original formulation of backprojections [151).

Deciding how to continue the backprojection from a C-obstacle

.I
Y
7.

\

C. Intersection of a CVC Ray and a C-Obstacle Edge

The decision criteria for an event corresponding to the
intersection of a CVC ray and a (possibly artificial) C-obstacle
vertex are as follows. As in the aforementioned example,
the vertex event being processed is a (possibly artificial) C-
obstacle vertex b, with incident obstacle edges e, and e,-1
and incident CVC ray eve. We denote by eev the free edge
of the velocity uncertainty cone erected at b. We assume e,-1
has already been added to the backprojection, as in Fig. 10.
We denote the orientation of the sweep-line by g, i.e., the
direction of the sweep itself is perpendicular to @. We assume
that y' points to the interior of the backprojection region that
lies behind the sweep-line, so that it would point to the right
in Fig. 10. The decision criteria are as follows:

64 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. I I , NO 1 . FEBRUARY 199.5

1) CVC ray cl , (. terminates on a nongoal sticking edge.
In this case, compliant motion along et,(. would result in
contact with a sticking edge from which motion to the goal
is not possible. Therefore, PI,,. should not be included in the
backprojection.

2) CVC ray f a l . , . terminates on a nongoal sliding edge e,
along which sliding motion away from the goal occurs. In this
case, a motion that brings the robot into contact with cJ will
continue by sliding away from the goal. Therefore should
not be included in the backprojection.

3) CVC ray I ' , . ~ terminates on a nongoal sliding edge ei
along which sliding motion toward the goal occurs. In this
case, a motion that brings the robot into contact with e:, will
continue by sliding towards the goal. Therefore cl . , can be
included in the backprojection.

terminates on a goal edge. Visual compliant
motion along e,,,. will bring the robot into contact with the
goal, so er,, can be included in the backprojection.

The cases enumerated above are exhaustive, and the cases
in which e,1c should be included in the backprojection occur
only when el ,c terminates on an edge already known to be in
the bac kprojec tion.

at which a free
edge of the velocity uncertainty cone eeu and a CVC ray
intersect are as follows. As in Section V-C, the vector f points
along the sweep-line toward the interior of the backprojection.

I) If the two edges incident on %I are already in the
backprojection, no new edge is added to the backprojection
boundary (this case is illustrated in Fig. 15).

2) If cor. is incident on a C-obstacle edge or vertex that is
already included in the backprojection, and the angle between
e,,,. and f is greater than the angle between e,,,, and f , continue
the backprojection along

COW=CI.

B.o"n

4) CVC ray

Fig. I 1. The correcf backprojection, when a CVC ray intersects a free edge,
and the CVC ray does not terminate in the backprojection.

The decision criteria at a vertex event

3) Otherwise, continue the backprojection along e,?..

-roJ.otkn (mcorrem inclmmios of EVC nr)

Fig. 12.
and the CVC ray does not terminate in the backprojection.

An incorrect backprojection, when a CVC ray intersects a free edge,

1) If 1', is a sliding edge, continue the backprojection along
(' t i

2) Otherwise, if the angle between I' , , , and is greater than
the angle between e,, and j', continue the backprojection
along c, (.

3) Otherwise, add P,, , to the backprojection.

D. Intersection of a CVC Ray and a Free Edge

The CVC ray should be used to continue the backprojection
at the intersection of a CVC ray and a free edge of the velocity
uncertainty cone only when the termination point of the CVC
ray on a C-obstacle edge is known to be in the backprojection.
This becomes evident by enumerating the possible types of
C-edges on which a CVC ray ?(,(may terminate.

E. Intersection of a Two CVC Rays

Since the intersection of two CVC rays is a visually observ-
able event, i.e., the two CM vertices simultaneously contact
two workspace VC rays, at such an intersection point, the
backprojection algorithm should be continued along the CVC
ray that maximizes the size of the enclosed backprojection.
Let f be as defined above, and let the two intersecting CVC
rays be e , , , ~ and r,,,2. Then

1) If the angle between p , , 1 and is greater than the angle
between e , , , ~ and f , continue the backprojection along
f t c l i

2) Otherwise, continue the backprojection along e,, 2.

F. Asymptotic Time Bounds

Before beginning the plane-sweep to compute a directional
backprojection, O (7 1) free edges can be erected at sticking
vertices and a separate plane-sweep can be used to intersect
them with each other and obstacle edges in time O (n log 7 1) .

Therefore, we make the following proposition.
Proposition I : The time to compute the directional back-

projection with visual constraint rays Bl,r.o(G) is O((n +

FOX AND HUTCHINSON: EXPLOITING VISUAL CONSTRAINTS IN SYNTHESIS OF UNCERTAINTY-TOLERANT MOTION PLANS 65

+B
"/ -I

I -

+I

+

I I

1 - 1 - I

Fig. 13. Effect of considering CVC rays in computing the directional bac

c) log n), where c is the number of pairwise intersections of
CVC rays.

Pro08 The total number of events to be examined is
O(n + c), since there are O(n) additional artificial vertices
introduced by the CVC rays, and c vertices that correspond
to the intersection of pairs of CVC rays. At each event, a
constant number of local comparisons is required: (a) a vertex
incident on a C-obstacle edge requires one test to determine
whether e; is a sliding or a sticking edge, and if the latter,
one test to determine whether evC or eev should be used to
continue the backprojection; (b) a vertex that corresponds
to the intersection of a free edge with a CVC ray requires
one test to determine whether evc or eev should be used to
continue the backprojection; (c) a vertex that corresponds to
the intersectian of a pair of CVC rays requires one test to
determine which CVC ray should be used to continue the
backprojection. Thus, the decision of how to continue the
backprojection at any event is O(1). Finally, as with all plane-
sweep algorithms, at each event the algorithm must perform
book-keeping operations that require time O(1og n). Therefore,
the asymptotic running time of our modified version of the
Donald and Canny algorithm for computing a directional

0 backprojection becomes O((n + c) log n).

G. 2 0 Examples

We now present some examples contrasting backprojections
that contain CVC rays to those obtained without considering
CVC rays. The two sets of examples illustrate the effect of
considering versus ignoring CVC rays. In each case, observe
that the CVC rays never make the backprojection smaller, and
frequently make it larger.

In all of the example figures, we use the following conven-
tions.

:kprojection.
1 I

1) The directional backprojection is enclosed by a dashed
line, with edges contributed by visual constraints highlighted
in bold.

lined.

I

%

2) Workspace obstacles are shaded; C-obstacles are out-

3) Solid arrows denote the commanded velocity direction.
4) The camera projection center (workspace coordinates) is

-1
Y'

indicated by a cross. I
-7 / r

!

5) The goal polygon is shaded black.
6) The direction I9 = 0 corresponds to movement straight

down the page.
Fig. 13(a)-(d) compare the traditional backprojection with

the VC-enlarged directional backprojection for a range of
commanded velocities. In each frame, the traditional direc-
tional backprojection, Bs(G) is shown on the left, and the
VC-enlarged backprojection B,,, (G) is shown on the right.

Frame (a) corresponds to commanded velocity 0 = 0. In this
case, the backprojection is significantly enlarged by the CVC
ray y. Note that free edge z, given by the inverted velocity
uncertainty cone erected at vertex b in both backprojections,
terminates on a workspace obstacle vertex, but 3: does not
close the backprojection in the right-hand figure since y
is nearly parallel to 3:. (The top horizontal edge of the
backprojection is given by the environment's bounding box.)
That the backprojection continues from b along z rather
than along a CVC ray indicates that z results in a larger
backprojection than any CVC ray incident on b.

Frame (b) corresponds to I9 = -7r/6. In this case, even
though a small part of a CVC ray contributes to the back-
projection, the backprojection is not significantly enlarged
by considering it. This is because for the given position of
the camera, there is no CVC ray incident on b that would
enlarge the backprojection, since we have stipulated that
visual compliant motion can only be robustly effected using

66 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. I I , NO. I , FEBRUARY 1995

CM vertices. This example suggests that the enlargement of
backprojections due to visual constraints is sensitive to camera
placement; we will discuss this in Section VIII-B.

Frame (c) corresponds to H = +T/& This is similar to the
case H = 0; the backprojection is significantly enlarged by the
CVC ray y. It is interesting to note that the backprojection
seems to be enlarged the most when the orientations of
CVC rays are most nearly perpendicular to the commanded
velocity direction (and therefore the free edges of the velocity
uncertainty cone). When this occurs, the free edges and
CVC rays “fan out” from C-obstacle vertices to enlarge the
backprojection into a funnel-like region.

The commanded velocity of frame (d) is nearly identical to
that of frame (c). However, the VC-enlarged backprojection
is significantly different for these two cases. The reason for
this, as will be shown in the next two sections, is that the
commanded velocity direction in these two cases is very near
a critical orientation, at which the topology of the VC-enlarged
backprojection changes in a qualitative way.

VI. THE NONDIRECTIONAL BACKPROJECTION

The backprojection algorithm presented in Section V com-
putes a directional backprojection relative to a specific com-
manded velocity. A complete planner should consider all pos-
sible commanded velocities at each iteration of the backchain-
ing algorithm. This can be achieved by considering the nondi-
rectional backprojection I?(G), which is defined as the union
of all directional backprojections together with their respective
velocity directions:

(3)

Donald has shown that the topology of the directional
backprojection changes only at a finite set of critical veloc-
ity orientations, 0 E S1 1121. Therefore, the nondirectional
backprojection can be represented by a finite set of directional
backprojections; one for each critical orientation, and one for
each noncritical interval. In this section, we review critical
orientations, and the time complexity of computing the tra-
ditional nondirectional backprojection, i.e., the backprojection
without visual constraints.

B (G) = lJ(&9(C) x (0)).
H

A. Critical Orientations

Critical orientations occur under the following three condi-
tions 1121.

1) A free edge becomes parallel to an edge in the obstacles’
visibility graph. To see this, notice that a free edge erected at
some obstacle vertex bo will rotate with H and may eventually
rotate to an angle 81 at which it intersects another obstacle
vertex b l . When the ray rotates beyond 81, it will be truncated
by the obstacle edge incident on 61, and part of that obstacle
edge may be included in the backprojection. Given this argu-
ment, note that the critical angle 81 occurs exactly when the
free edge coincides with the visibility-graph edge connecting
bo to 01. Hence, such orientations are called v-graph critical.

2) An obstacle edge changes from a sliding into a sticking
edge or vice versa. This occurs when a free edge of the velocity

uncertainty cone is parallel or antiparallel to an edge of the
friction cone. These orientations are called sliding-critical.

3) The intersection point of two free edges of the back-
projection intersects an obstacle edge. Since the free edges
rotate with H , so do the backprojection vertices formed by
their intersections. When any such vertex intersects an obstacle
edge, one of the free edges incident on that vertex disappears,
to be replaced by the obstacle edge. These are called vertex-
critical orientations.

Donald presents an algorithm for computing these critical
orientations. He then shows that the nondirectional backpro-
jection may be represented by a finite set of directional back-
projections: one directional backprojection for each critical
orientation, and one representative directional backprojection
for each noncritical interval (where the value of 8 at which
the backprojection is computed may be chosen arbitrarily).

Since the representative directional backprojection inside a
noncritical interval may be computed for an arbitrary value
of 8 in that interval, it is possible that the algorithm will fail
to compute a directional backprojection that entirely contains
the polygonal start region R. To avoid this problem, Donald
1141 suggests adding R to the arrangement of polygons, thus
adding the following critical orientation criterion.

4) An edge of R intersects a free edge of the backprojection.
These orientations are called R-critical.

For an input of 7) C-obstacle vertices, R has a constant
number of edges and there are O (n) free edges bounding
the backprojection. Therefore there are O(7 1) R-critical ori-
entations. If the directional backprojection for some R-critical
orientation 8, contains all the vertices of R, then a commanded
motion from R with velocity Go, will reach the goal.

B. Time Complexity

Although Donald shows that there are 0(7),’) critical ori-
entations of type 3), he proposes a naive O (7 1 ’) algorithm
to compute them, as follows. There are O (n) free edges,
and therefore O(7r’) possible intersections of free edges.
These intersections are free-space vertices of the directional
backprojection that trace out circles as the velocity orientation
is changed. Each such circle may intersect O (n) obstacle
edges. Therefore, the number of intersections of circles with
obstacle edges if U (T / , ~) . The O (n 2) critical orientations are
contained in this set of size O(n’).

The motivation for this algorithm is that, of all possible
O (n) free-space backprojection vertices, the subset of these
that will contribute to the critical orientations is not known in
advance; however, if all intersections of possible free-space
vertices with obstacle edges are computed in advance, this set
is guaranteed to contain all of those that will contribute to
critical orientations.

Donald’s critical-slice algorithm recomputes the backprojec-
tion from scratch at each critical orientation and inside each
noncritical interval. Recently, Briggs has presented an algo-
rithm that incrementally computes the nondirectional back-
projection, achieving an 0 (n 2 log 71) time complexity 141, 151.
The reduced complexity is due in part to an amortized analysis
that shows there are at most O(rr’) topological changes to the

FOX AND HUTCHINSON: EXPLOITING VISUAL CONSTRAINTS IN SYNTHESIS OF UNCERTAINTY-TOLERANT MOTION PLANS I

D-

H-

V
/

.- --
Fig. 14.
vertex with a CVC ray.

A free-edge-critical orientation, just before an intersection of a free

boundary of the backprojection over the entire range of 8. The
algorithm also uses a dynamic data structure to keep track
of the rotating free-space vertices, rather than computing all
possible free-space vertices in advance.

VII. THE EFFECT OF VISUAL CONSTRAINTS
ON THE NONDIRECTIONAL BACKPROJECTION

In this section, we describe how the introduction of vi-
sual constraints affects the computation of the nondirectional
backprojection. In particular, we discuss the new critical
orientations that result from the introduction of visual con-
straints, and the time complexity of a modified nondirectional
backprojection algorithm.

According to the procedure outlined in Section V, the
decision of whether to continue the backprojection along a
CVC ray from a given vertex event depends, among other
things, on whether incident C-obstacle edge e; is a sliding or
a sticking edge. Sliding versus sticking behavior changes only
at sliding-critical Orientations [121, so these orientations are
also critical for VC-enlarged backprojections.

The introduction of visual constraints also adds two new
criteria for critical orientations. The first is analogous to
Donald’s vertex-critical criterion, and the second to his vgraph-
critical criterion.

A. Free-Edge-Critical Orientations

Suppose fi is a vertex of the backprojection formed by the
intersection of two rays of the inverted velocity uncertainty

Fig. 15.
vertex with a CVC ray.

A free-edge-critical orientation, just after the intersection of a free

5) A free-space vertex of the backprojction intersects a CVC
ray. We call such orientations free-edge-critical.

Proposition 2: There are O(n2) free-edge-critical orienta-
tions.

Proof: We showed that the O(n) workspace obstacle
vertices give rise to O(n) CVC rays. Donald shows that
there are O(n2) vertex-critical orientations resulting from the
intersection of free vertices with O(n) obstacle edges. The
same argument applies by treating the O(n) CVC rays as

Of course, it is not always the case that the backprojec-
tion topology changes at free-edge-critical orientations, as
illustrated in Figs. 11 and 12.

obstacle edges. 0

B. VC-Critical Orientations

Before describing the second critical orientation criterion
added by CVC rays, we note the conditions from which it
follows directly:

The visibility of a vertex does not change with the
commanded velocity direction 8, since the workspace
obstacles and camera are fixed. Therefore the workspace
VC rays do not change with 8.
Consequently, the C-space representation of the VC rays
does not change with 8, since CVC rays are constructed
from workspace VC rays by considering only the vectors
joining adjacent robot vertices. Since the robot cannot
rotate, these vectors never change.

8

cone. As the commanded velocity direction 8 varies, pi moves
along a circular arc. A critical orientation occurs when this
circular arc intersects a CVC ray, since the decision of which
of the free edges or CVC ray should be used to continue the
backprojection may change. This is illustrated in Fig. 14 and
15. By analogy to Donald’s v-graph critical orientations, we
express this new critical orientation as follows.

With respect to the directional backprojection, cvc rays
behave as if they were nonsticking obstacle edges termi-
nating at the camera focal center, since they do not move
and sticking Can never Occur on them.

With these statements in mind, we note the second new cri-
terion for critical orientations added by CVC rays, constructed
by analogy to Donald’s condition 3):

68 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL I I , NO. I , FEBRUARY 1995

topology of the backprojection over all values of H [4],
[5] . This same analysis should apply to backprojections that
include visual constraints, since there are only 0 (7 r 2) addi-
tional critical orientations due to visual constraints. Brigg’s
algorithm [4], [5] computes the nondirectional backprojection
in 0 (7 1 * logn) time when there are O (n 2) critical orientations.
We believe that it should be possible to extend this algorithm
to compute B,, (G) in time O(n2 log 71 ,) . It remains to provide

U

\ ‘ 4 r

en\
\\

a constructive proof of this conjecture.

Fig. 16. How the backprojection changes across a VC-critical orientation.

6) A free edge becomes parallel to a CVC ray. At such an
orientation, the decision of whether to add the free edge or
the CVC ray to the backprojection may change. We will call
such orientations VC-critical.

Fig. 16 shows how the backprojection changes across such
a critical orientation.

Proposition 3: There are O(n) VC-critical orientations.
Proof As was shown in Section VII-A, there are O (n)

CVC rays in an environment that contains T L C-obstacle
vertices. Each of these introduces two critical orientations of
the type previously described, given by the two free edges
of the velocity uncertainty cone. Hence, there are O (n) VC-
critical orientations. 0

C. New Asymptotic Time Bounds

If we denote by B,,, (G) the directional backprojection
with visual constraints, and by B,,(G) the nondirectional
backprojection with visual constraints, we have

B,,, (G) = U(B,,,, (G) x (0))
0

Proposition 4: A representation of the nondirectional back-
projection with visual constraints, B,,, (G), can be computed
in time O(I L ’ (~ + r) logn), where c is the number of painvise
intersections of CVC rays.

Proof: Donald’s critical-slice method [121 computes the
nondirectional backprojection in time O(n4 log 71) when there
are O(nJ) critical orientations, by computing 0 (n 3) slices
each in time O (n log 71) . For the VC-enlarged backprojection,
the complexity of computing a slice, B,,,, (G), is O ((n +
e) log 7 1) . There are O(71) additional VC-critical orientations,
and O(7 ~ ~) additional free-edge critical orientations, but this
does not asymptotically increase the total number of critical
orientations since there are already O(n2) 71-graph critical
orientations [12]. The critical orientations can be found using
Donald’s proposed naive algorithm in time 0 (7 ~ ~) . Hence, the
nondirectional backprojection with visual constraints can be

0
Conjecture 1: A representation of the nondirectional back-

projection with visual constraints, B7,,(G), can be computed
in time O(n2 log n) .

Rationale: Using an amortization techniques, Briggs has
shown that for the nondirectional backprojection (without
visual constraints) there are at most O (n 2) changes to the

computed in time O(n3 (71 + c) log 71) .

VIII. DISCUSSION

In this section, we discuss a number of issues related to
exploiting visual constraints in the computation of backprojec-
tions. We first address the impact of visual constraints on the
number of steps required for a successful plan. Following this,
we discuss the effects of camera placement on backprojections.
Finally, we discuss extending our algorithms to the case of
C = R3.

A. Single-Step Versus Multistep Plans

The directional backprojection with visual constraints
B, ,< , (G) is always at least as large as the directional
backprojection Bo(G) as defined by Erdmann [15], i.e.,
Bo(G) C B,,,, (G) (and in many cases the inclusion relation is
proper). This is illustrated in the examples of Fig. 13. Let G be
a goal region, and R be a start region in Cvalld. A single-step
plan is possible when R is contained entirely in &(G) for
some 19. Thus when R Bl, , , (G) and R $ Bo(G), single-
step plans are possible when visual constraints are exploited,
but not when they are ignored. This can be seen by noting the
difference between the VC-enlarged and traditional directional
backprojections in Figs. 13(a) and (c).

/ ,

B. The Effects of Camera Placement

The examples in Fig. 17 illustrate the effect of moving
the camera within the environment. In each set of figures,
the commanded velocity is held constant while the camera
assumes a range of positions from the upper right to the upper
left of the environment.

The set of frames shown in Fig. 17(a) corresponds to
commanded velocity direction 0 = -n/6. The square robot
is shown in frame 1. Frame 1 is similar to Fig. 13(b). Frames
2 and 3 differ in the location of the camera.

The set of frames shown in Fig. 17(b) corresponds to 0 = 0.
In frame 1, the region R is not included, because motions
commencing in it, even if they visually comply to the CVC
rays bounding R, may stick on the horizontal top edge of the
obstacle. The remaining regions are bounded mostly by CVC
rays. Note the inclusion of the vertex f . If visual compliant
motion begins along the CVC ray incident on f , it may safely
continue and intersect the (sliding) edge E. On the other hand,
if motion commences from a point below f , uncertainty cone
constraints allow the inclusion of sliding edge E. If the CVC
ray incident on f did not intersect E , that CVC ray would not
have been included in the backprojection, as was discussed in
Section V.

FOX AND HUTCHINSON: EXPLOITING VISUAL CONSTRAINTS IN SYNTHESIS OF UNCERTAINTY-TOLERANT MOTION PLANS

.

69

E

+ +

2

+

+

3

+

1 2 3

Fig. 17. Effect of moving the camera within the environment.

Combinations of CM-vertex constraints and close-together
CVC rays arising from different workspace VC rays (z and y)
give the backprojection of frame 2. Finally, frame 3 illustrates
a situation similar to that of frame 1, except that, in this case,
the excluded region of the backprojection is bounded by a
CVC ray on the right and by a free edge of the velocity
uncertainty cone on the left.

examples
of Fig. 17 suggest that the topology of the VC-enlarged
backprojection is sensitive to camera position, since CM
vertices are computed by considering the relative positions
of the camera and the robot. The problem of where to place
the camera to best exploit visual constraints appears to be
closely related to the problem of computing aspect graphs for
an arrangement of polyhedra. The notion of an aspect graph
was originally introduced by Koenderink and van Doorn [24].
Constructing the 3D aspect graph involves decomposing the
viewing space into cells such that moving the camera within
a cell does not change the qualitative topological structure of
the projected image of the polyhedron, and then characterizing
the connectivity among these cells as the viewpoint is moved
from one cell to another. The 2D aspect graph is analogous:
it divides the plane into viewing cells inside each of which
the set of vertices seen by the camera does not change, and
characterizes the connectivity among these cells.

1) Camera Placement and Aspect Graphs: The -

*

The set of CVC rays that can be used to enlarge the
backprojection depends on the geometry of the robot as well
as the camera position, since the spatial relationship between
the robot and the camera determines which robot vertices
are CM vertices. Although a full treatment of this topic is
beyond the scope of this paper, we expect there to be viewing-
critical conjigurations and noncritical viewing regions, such
that moving the camera within a noncritical viewing region
does not alter the qualitative structure of the VC-enlarged
directional backprojection.

Conjecture 2: There exists a representation of size
O((n ~ n) ~) of the noncritical viewing regions.

Rationale: It is known that in the 2D aspect graph of an
arrangement of polygons, the noncritical regions are bounded
by the supporting lines of the edges of the polygons. Since the
m-vertex robot must be considered part of the arrangement
of polygons for the purpose of computing CM vertices, and
computation of CM vertices involves making each vertex of
the robot coincident with each visible vertex of a polygon,
there are effectively O(mn) polygon vertices (and therefore
edges) to consider. These define O((w ~ n) ~) intersections,

0
More thorough investigation of this issue is the subject of

future research. Aspect graph computation is a classic problem
in computer vision, and there is a large body of work on

which are the vertices of the noncritical regions.

70 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 1 1 , NO. 1 . FEBRUARY 1995

computaton of aspect graphs not only for arbitrary polyhedra,
but for several classes of curved solids as well; see, for
example, [191 and [33]. We expect that future work in visual-
constraint-based planning will benefit from the application of
aspect graph techniques to the problem of optimum camera
placement.

C. Backprojections for C = R3
Here, we briefly describe a number of the difficulties that

are encountered when extending our algorithms to the 3D case.
The reader should note these difficulties are inherent in the
computation of 3D backprojections, and are not introduced by
considering visual constraints. In fact, we will show informally
that considering visual constraints does not make the 3D
backprojection problem computationally harder.

I) 3 0 Velocity Uncertainty Cones: One of the constraints
that makes a 2D implementation computationally attractive is
the restriction that the robot and C-obstacles be polygonal, re-
sulting in a backprojection bounded by straight line segments.
In particular, the necessary intersections of line segments are
easy to compute. Velocity uncertainty is simply bounded by a
2D uncertainty cone, which encloses all possible trajectories
from a starting configuration.

However, in three dimensions, the velocity uncertainty
cones are 3D cones with curved surfaces. Recall that in the
absence of a sliding surface, the backprojection is bounded
by the surfaces of uncertainty cones. Consider backprojection
from a rectangular obstacle face with no other objects in
the environment. According to Erdmann’s algorithm [151,
we erect the inverted velocity uncertainty cone along each
sticking edge, and trace the backprojection bounded by the
intersections of the cones. However, these intersections are
no longer necessarily straight lines, nor are the backprojection
boundaries planar. While the backprojection may still in theory
be constructed this way, it is less computationally attractive
because of the more difficult geometry.

2) Inscribed Ellipses: Another possible approach is to ap-
proximate the goal surface by its maximal inscribed ellipse.
This is motivated by observing that under the uncertainty cone
model, a motion may follow any trajectory inside a cone. The
base of the cone is a circle in the plane perpendicular to the
commanded motion direction. In general, it projects onto an
arbitrary planar surface as an ellipse, the ratio of whose axes is
determined by the angles at which the target plane intersects
the uncertainty cone. Let us refer to such an ellipse as the
inscribed ellipse of a goal surface. Following this approach,
we might construct the backprojection of an inscribed ellipse,
rather than the backprojection of the polygonal target surface.
However, the resulting planner would be incomplete, as it
would fail to include in the backprojection some points from
which a commanded motion would reach a point on the target
surface but not contained in the target surface’s inscribed
ellipse.

3) Critical Cell Decomposition: As discussed in Section
VI, Donald exploits the polygonal structure of the 2D back-
projection to derive a critical-slice method for decomposing
the velocity direction space S1 using a finite number of critical

orientations and noncritical intervals. In three dimensions,
two angles are necessary to specify a commanded motion
direction, say 4 and 6’ using the convention of spherical
coordinates. Thus, the space of commanded motion directions
is J = [0, 7 r) x [O. 27r). To apply Donald’s technique here,
J must be decomposed into cells, inside each of which
the topology of the backprojection does not change. The
boundaries of the cells define critical orientations.

However, since the backprojection is no longer polyhedral,
determining when changes in topology occur is considerably
more difficult. Furthermore, although in two dimensions a
backprojection polygon is closed by the intersection of two
rays, a 3D backprojection volume is, in general, not closed
by the intersection of planes, so it is not obvious exactly
how the topology changes across adjacent critical cells. We
speculate that there exists an algebraic representation of the
critical orientation criteria, in which case, an algebraic cell
decomposition 131, [1 11 could be used to determine the critical
cell boundaries.

4) Computational Complexity: Without a complete compu-
tational complexity analysis, we make the following conjecture
about the complexity of considering visual constraints in three
dimensions.

Conjecture 3: Considering visual constraint surfaces in the
3D directional backprojection does not increase the asymptotic
time complexity of computing it.

Rationale: The operations necessary to support VC sur-
faces are also necessary for supporting the basic algorithm.
Ruled VC surfaces behave like frictionless obstacle surfaces
in that they do not change with motion direction, and like
uncertainty cone surfaces in that they are free constraint

0 surfaces not supported by a physical object surface.

IX. CONCLUSIONS

In this paper, we have introduced visual constraint surfaces
as a mechanism to effectively exploit visual constraints in the
synthesis of uncertainty-tolerant robot motion plans. Visual
constraint surfaces can be used to effect visual guarded and
visual compliant motions. By deriving a configuration space
representation of visual constraint surfaces, we were able to in-
clude visual constraint surfaces as boundaries of the directional
backprojection. We described an implemented backprojection
planner for C = R2 based on Donald and Canny’s algorithm
1121.

By examining the effects of visual constraints as a function
of the direction of the commanded velocity, we were able to
determine new criteria for critical orientations, i.e., orientations
at which the topology of the directional backprojection, includ-
ing visual constraint surfaces, might change. We presented
an algorithm to compute the nondirectional backprojection
modified to include visual constraint surfaces.

Finally, we have discussed a number of issues that are
related to the inclusion of visual constraint surfaces in back-
projections, including multistep versus single-step plans, the
problem of optimal camera placement, and extending the
backprojection algorithm to the 3D case.

FOX AND HUTCHINSON: EXPLOITING VISUAL CONSTRAINTS IN SYNTHESIS OF UNCERTAINTY-TOLERANT MOTION PLANS 71

ACKNOWLEDGMENT [27] T. LoaznePkrez, M. T. Mason, and R. H. Taylor, “Automatic synthesis
of fine-motion strategies for robots,” Int. J. Robotics Res., vol. 3, no. 1,
pp. 3-24, Spring 1984.

[281 M. T. Mason, “Compliance and force control for computer controlled
manipulators,” in Robot Motion: Planning and Control, B. Brady, J. M.
Hollerbach, T. L. Johnson, T. Lozano-PCrez, and M. T. Mason, Eds.
Cambridge. MA: M.I.T. Press. 1982. DD. 373404.

The authors are grateful to the anonymous reviewers, who
provided many constructive comments that greatly improved
the clarity of the presentation, and to Michael and
Jean Ponce for their helpful comments on an earlier draft of

paper.

REFERENCES

J. E. Agapakis, J. M. Katz, J. M. Friedman, and G. N. Epstein, “Vision-
aided robotic welding: An approach and a flexible implementation.” Int.
J. Robotics Res., vol. 9, no. 5, pp. 17-33, Oct. 1990.
P. Allen, B. Yoshimi, and A. Timcenko, “Real-time visual servoing,” in
Proc. IEEE Int. Con$ Robotics Automat., 1991, pp. 851-856.
D. S. Amon, “Geometric reasoning with logic and algebra,” Artificial
Intell.. vol. 37, nos. 1-3, pp. 37-60, Dec. 1988.
A. J. Briggs, “An efficient algorithm for one-step planar compliant mo-
tion planning with uncertainty.” in Proc. ACM Annu. Symp. Computat.
Geometry, 1989.
~, “An efficient algorithm for one-step planar compliant motion
planning with uncertainty,” Algorithmica, vol. 8, pp. 195-208, 1992.
R. A. Brooks, “Symbolic error analysis and robot planning,” Int. J.
Robotics Res., vol. 1, no. 4, Winter 1982.
J. F. Canny, “On computability of fine motion plans,” in Proc. IEEE
Int. Con$ Robotics Automat., 1989, pp. 177-182.
A. Castaiio, “Resolved-rate hybrid visiodposition servo control of a
robotic manipulator,” M.S. thesis, University of Illinois at Urbana-
Champaign, 1992.
A. Castaiio and S. A. Hutchinson, ‘‘Visual compliance: Task-directed
visual servo control,” IEEE Trans. Robotics Automat., vol. 10, no. 3, pp.
334-342, June 1994.
W. F. Clocksin, J. S. E. Bromley, P. G. Davey, A. R. Vidler, and C. G.
Morgan, “An implementation of model-based visual feedback for robot
arc welding of thin sheet steel,” Int. J. Robotics Res., vol. 4, no. 1, pp.
13-26, Spring 1985.
G. E. Collins, “Quantifier elimination for real closed fields by cylindrical
algebraic decomposition,” in Lecture Notes in Computer Science, Vol. 33.
New York Springer-Verlag, 1975, pp. 135-183.
B. R. Donald, “Error detection and recovery for robot motion planning
with uncertainty,” Ph.D. dissertation, M.I.T., Cambridge, MA, 1987.
-, “A geometric approach to error detection and recovery for robot
motion planning with uncertainty, Artificial Intell., vol. 37, nos. 1-3, pp.
223-271, Dec. 1988.
-, “Planning multi-step error detection and recovery strategies,”
Int. J. Robotics Res., vol. 9, no. 1, pp. 3-60, Feb. 1990.
M. Erdmann, “On motion planning with uncertainty.” M.S. thesis,
M.I.T., 1986.
-, “Using backprojections for fine motion planning with uncer-
tainty,” Int. J. Robotics Res., vol. 5, no. 1, pp. 1 9 4 5 , Spring 1986.
I. D. Faux and M. J. Pratt, Computational Geometry for Design and
Manufacture. Chichester, England: Ellis Horwood, 1985.
J. T. Feddema and 0. R. Mitchell, “Vision-guided servoing with feature-
based trajectory generation,” IEEE Trans. Robotics Automat., vol. 5, no.

Z. Gigus, J. Canny, and R. Seidel, “Efficiently computing and repre-
senting aspect graphs of polyhedral objects,” Int. J. Robotics Res., vol.
13, no. 6, pp. 542-551, June 1991.
B. K. P. Hom, Robot Vision.
S. A. Hutchinson, “Exploiting visual constraints in robot motion plan-
ning,’’ in Proc. IEEE In?. Con$ Robotics Automat., 1991.
S. A. Hutchinson and A. C. Kak, “SPAR: A planner that satisfies
operational and geometric goals in uncertain environments,” AI Mag.,
vol. 2, no. 1, pp. 3 M 1 , Spring 1990.
P. K. Khosla, C. P. Neuman, and F. B. Prinz, “An algorithm for seam
tracking applications,” Znt. J. Robotics Res., vol. 4, no. 1, pp. 2 7 4 1 ,
Spring 1985.
J. J. Koenderink and A. J. Van Doom, “The intemal representation of
solid shape with respect to vision,” Biological Cybem., vol. 32, pp.
21 1-216, 1979.
J. C. Latombe, Robot Motion Planning. Boston: Kluwer Academic,
1991.
J. C. Latombe, A. Lazanas, and S. Shekhar, “Robot motion planning
with uncertainty in control and sensing,” Artificial Inrell., vol. 52, pp.
1-47. 1991.

5, pp. 691-700, Oct. 1989.

Cambridge, MA: M.I.T. Press, 1986.

.*
[29] -, “Automatic planning of fine motions: Correctness and complete-

ness,” in Proc. IEEE Int. Con$ Roborics, 1984, pp. 492-503.
[30] N. Papanikolopoulos, P. K. Khosla, and T. Kanade, “Vision and control

techniques for robotic visual tracking,” in IEEE In?. Con$ Roborics

[31] R. P. Paul and B. Shimano, “Compliance and control,” in Proc. Joint
Amer. Aurotnut. Cont. Con$, 1976, pp. 694-1699.

[32] J. Pertin-Troccaz and P. Puget, “Dealing with uncertainties in robot
planning using program proving techniques,” in Proc. Fourth Int. Symp.
Robotic Res., 1987.

[33] J. Ponce and D. J. Kriegman, “Computing exact aspect graphs of curved
objects: Parametric patches,” in Proc. Amer. Assoc. Artificial Intell., July
1990.

[34] F. P. Preparata and M. I. Shamos, Computational Geometry: An Intro-
duction. New York: Springer-Verlag. 1985.

[35] M. H. Raibert and J. J. Craig, “Hybrid positiodforce control of ma-
nipulators,” J. Dynamic Syst., Measure. Cont., vol. 102, pp. 126133,
June 1981.

[36] P. Saraga and B. M. Jones, “Simple assembly under visual control,” in
Robot Vision, Alan Pugh, Ed. U.K.: IFS, 1983, pp. 209-223.

[37] Y. Shirai and H. Inoue, “Guiding a robot by visual feedback in
assembling tasks,” Patt. Recognition, vol. 5, pp. 99-108, 1973.

[38] S. B. Skaar, W. H. Brockman, and R. Hanson, “Camera-space ma-
nipulation,” In?. J. Robotics Res., vol. 6, no. 4, pp. 20-32, Winter
1987.

[39] R. H. Taylor, ‘The synthesis of manipulator control programs from task-
level specifications,” Report AIM-282, Stanford Artificial Intelligence
Lab., 1976.

[40] L. E. Weiss, A. C. Sanderson, and C. P. Neuman, “Dynamic sensor-
based control of robots with visual feedback,” IEEE J. Robotics Au-
tomat., vol. 3, no. 5, pp. 404-417, Oct. 1987.

[41] D. E. Whitney, “Force feedback control of manipulator fine motions,”
J. Dynam. Syst., Measure. Con?., pp. 91-97, June 1977.

[42] P. M. Will and D. D. Grossman, “An experimental system for computer
controlled mechanical assembly,” IEEE Trans. Compur., vol. C-24, no.
9, pp. 879-888, 1975.

Automat., pp. 857-864, 1991.

Armando Fox was with the VisionRobotics Group
at the Beckman Institute, University of Illinois at
UrbanaChampaign, during the course of the re-
search reported here. He has had prior research
experience with the MONSOON dataflow project at
the M.I.T. Laboratory for Computer Science, and is
currently working as a microprocessor architect with
Intel Corp. His current research interests include
high-performance and parallel computer architec-
tures and programming environments, in which he
plans to pursue a doctoral degree beginning in fall

1994.

Seth Hutchinson received the Ph.D. degree. from
Purdue University, West Lafayette, IN, in 1988.

He spent 1989 as a Visiting Assistant Professor
of Electrical Engineering at Purdue University. In
1990, he joined the faculty at the University of
Illinois in Urbana-Champaign, where he is currently
an Assistant Professor in the Department of Electri-
cal and Computer Engineering, and the Beckman
Institute for Advanced Science and Technology.
Dr. Hutchinson’s current research interests include:
integration of vision, force and position sensing for

robot motion planning and control; dynamic planning of sensing strategies;
constraint based reasoning; task planning for automated assembly; evidential
reasoning applied to model based object recognition; and sensor integration.

1

I ’

