


D igital computing performance has improved 10,000-fold in the past two

decades: what took a year of number crunching in 1983 takes less than an hour

nowadays, and a desktop computer from that era can’t match the processing power

of one of today’s handheld organizers.

We pay a price for these enhancements, though. As digital systems have grown in

complexity, their operation has become brittle and unreliable. Computer-related fail-

ures have become all too common. Personal computers crash or freeze up regularly;

Internet sites go offline often. New software upgrades, designed to augment perfor-

mance, may leave things worse than they were before. Inconvenience aside, the situa-

tion is also an expensive one: annual outlays for maintenance, repairs and operations

far exceed total hardware and software costs, for both individuals and corporations.

CoSelf-Repairing

By embracing the inevitability of system failures, RECOVERY–

BY Armando Fox AND David Patterson
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mputers

– ORIENTED computing returns service faster 
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Our group of research collaborators
at Stanford University and the University
of California at Berkeley has taken a new
tack, by accepting that computer failure
and human operator error are facts of life.
Rather than trying to eliminate computer
crashes—probably an impossible task—

our team concentrates on designing sys-
tems that recover rapidly when mishaps
do occur. We call our approach recovery-
oriented computing (ROC).

We decided to focus our efforts on im-
proving Internet site software. This kind of
highly dynamic computing system must
evolve and expand quickly in response to
consumer demands and market pres-
sures—while also serving users who expect
instant access at any time. Consider the ex-
ample of the Google search engine, which
in just a few years has gone from locating
hundreds of millions of Web pages of Eng-
lish text to three billion pages in more than
20 languages in a dozen formats, plus im-
ages. Meanwhile the number of daily
Google searches has grown from 150,000
to 150,000,000—the site is now 1,000
times busier than it was at the outset. 

Because of the constant need to up-
grade the hardware and software of In-
ternet sites, many of the engineering tech-
niques used previously to help maintain
system dependability are too expensive to
be deployed. Hence, we expect Internet
software to be a good proving ground for
our ideas and perhaps a model for other
computing systems, including desktop
and laptop machines. If ROC principles
can help the big animals in the computa-
tional jungle, they might do the same for
the smaller species [see box on page 58?].

Following a proven engineering strat-

egy first adopted during the era of cast-
iron-truss railroad bridges in the 19th
century, our initial step was to see what
we could learn from previous failures.
Specifically, we asked: Why do Internet
systems go down, and what can be done
about it? We were a bit surprised to find
out that operator error was a leading
cause of system problems. Traditional ef-
forts to boost the dependability of soft-

ware and hardware have for the most
part overlooked the possibility of human
mistakes, yet in many cases operators’
miscues accounted for more downtime
than any other cause.

Operators may face such difficulties
because computer designers and pro-
grammers have frequently sacrificed ease
of use in the quest for better performance.
Database software, for example, can re-
quire a full-time staff of trained adminis-
trators to manage it. Ironically, because
hardware and software have grown
cheaper over time, operator salaries are
now often the biggest expense in running
complex Internet sites.

With these issues in mind, our team is
exploring four principles to guide the con-
struction of “ROC-solid” computing sys-
tems. The first is speedy recovery: prob-
lems are going to happen, so engineers
should design systems that recover quick-
ly. Second, suppliers should give opera-
tors better tools with which to pinpoint
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■  Despite the undoubted power of today’s computers, users continue to be
tormented by their systems’ stubborn unreliability. Recovery-oriented
computing (ROC) design practices could do much to solve this predicament.

■  ROC principles—which comprise efforts to engineer rapid-recovery capabilities,
software tools to locate faults quickly, “undo” functions to reverse human
operators’ mistakes, and the means to inject errors to test systems’ ability to
return to service—may eventually take much of the frustration out of computing.

■  Benchmarking programs that evaluate the speed with which computer 
systems return to full service would encourage industry efforts at improving
dependability.

Overview/High-Dependability Computing

WHOSE FAULT WAS THAT?
TRADITIONAL ENGINEERING approaches to raising
the reliability of computer systems largely ignore
the possibility of operator error. But in many
cases human mistakes account for more
downtime (time during which the system was not
functioning) than hardware problems or software
bugs. The pie chart (right) depicts a breakdown of
typical failure causes for three Internet sites. 

For many industries, computer system
downtime can be costly or even life-threatening.
Engineers call the proportion of time a computing
system functions correctly its
availability, which is measured in
“nines” [ graph]. A system that runs
without crashing 99.999 percent of the
time, for example, has an availability of
“five nines,” which corresponds to
about two hours of downtime over 25
years of operation. Rather than
reducing the number of failures,
proponents of recovery-oriented
computing advocate methods to
shorten the time needed to bring
systems back online. Raising
availability from two nines to five nines,
for instance, shrinks total recovery time
from 90 hours to five minutes a year. 
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the sources of faults in multicomponent
systems. Third, programmers ought to
build systems that support an “undo”
function (similar to those in word-pro-
cessing programs), so operators can cor-
rect their mistakes. Last, computer scien-
tists should develop the ability to inject test
errors; these would permit the evaluation
of system behavior and assist in operator
training. We plan to release all the ROC-
inspired software applications we write to
the computing community at no cost.

To foster the adoption of our ap-
proach, we also advocate the development
and distribution of benchmark programs
that would test the speed of a computing
system’s recovery. This software would
measure the computer industry’s progress
in raising reliability and encourage com-
panies to work toward achieving this end.

Quick Comeback
MANY A USER REBOOTS his or her
personal computer routinely—either pre-
emptively, because the machine is behav-
ing strangely, or reactively, because it has
crashed or seized up. Rebooting works
for large computers, too, because it wipes
the slate clean and fixes a whole class of
so-called transient failures—that is, prob-
lems that appear intermittently.

Unfortunately, most systems take a
long time to reboot and, worse, may lose
data in the process. Instead we believe that
engineers should design systems so that
they reboot gracefully. If one were to look
inside a computer, one would see that it is
running numerous different software com-
ponents that work together. During on-
line shopping, for instance, some software
modules let customers search through the
available merchandise; others permit
items to be added to a “shopping cart.”
Still other software enables the comple-
tion of the purchase. Yet another layer of
programming choreographs all these
functions to produce the overall experience
of using the Web site by ensuring that each

line of code does its job when required.
Frequently, only one of these modules

may be encountering trouble, but when
a user reboots a computer, all the soft-
ware it is running stops immediately. If
each of its separate subcomponents could
be restarted independently, however, one
might never need to reboot the entire col-
lection. Then, if a glitch has affected only
a few parts of the system, restarting just
those isolated elements might solve the
problem. Should that prove ineffective,
reinitializing a larger set of subcompo-
nents might work. The trick is to be able
to restart one module without acciden-
tally confusing its peers into thinking
something is really wrong, which is akin
to swapping out the bottom plate in a
stack without allowing the other plates to
fall—a difficult but doable feat.

George Candea and James Cutler,
Stanford graduate students on our team,
have focused on developing this indepen-
dent-rebooting technique, which we call
micro-rebooting. Cutler’s experience in-
cludes building systems that use inexpen-
sive ground receivers assembled from off-
the-shelf PCs, low-cost consumer radios
and experimental software to capture in-
coming satellite data. In use, ground-sta-
tion failures were common, and if a hu-
man operator was not available to reac-
tivate the equipment manually, the satellite
signal could be lost—and with it, all the
data for that orbit.

Last year Candea and Cutler tested
micro-rebooting on the ground-station
software. They and others modified each
receiving-station software module so that
it would not “panic” if other subcompo-
nents were reinitialized. The students first
consulted the human operators to learn
about the most frequent causes of failures
and then experimented to determine which
sets of subcomponents would have to be
reinitialized to cure those specific mal-
adies. They succeeded in automating the
recovery process for a range of recurring

problems, cutting the average restoration
time from 10 minutes to two—fast enough
for a ground station that has faltered to
reacquire the satellite signal and continue
collecting data for the latest orbit.

In dependability lingo, the percentage
of time a computer system is functioning
correctly is termed its availability, which
is typically measured in “nines.” A system
that is functioning correctly 99.999 per-
cent of the time, for example, has an
availability of “five nines,” corresponding
to about two hours of downtime over 25
years of operation. In contrast, well-man-
aged mainstream computing systems are
available only 99 to 99.9 percent of the
time (“two to three nines”). Going from
two nines to five nines would save almost
90 hours of downtime a year, which is
easy to appreciate when downtime costs
big money [see box on page 00]. Two
methods exist to achieve high reliability:
ensuring fewer breakdowns or, failing
that, bringing systems back online faster.

For the satellite ground-station oper-
ators, a fivefold-faster return to service
was much more valuable than a fivefold
increase in the time between failures (bet-
ter reliability), even though either mea-
sure would yield the same level of im-
proved availability. We believe that a va-
riety of computing systems exhibit such
a threshold.

Although much effort had to be ex-
pended to modify the ground-station soft-
ware manually, Candea and one of us
(Fox) are now investigating whether the
technique can be applied in an automat-
ed fashion to Web sites programmed us-
ing the Java 2 Enterprise Edition, a popu-
lar development framework for Internet
software.

The most common way to fix Web
site faults today is to reboot the entire sys-
tem, which takes anywhere from 10 sec-
onds (if the application alone is rebooted)
to a minute (if the entire machine is restart-
ed). According to our initial results, mi-
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Two methods to ACHIEVE HIGH RELIABILITY: ensure
fewer breakdowns or bring systems back online faster.
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OLD  METHOD NEW METHOD

THREE WEB USERS (A, B and C) 
access a site. A and B are using
subcomponent 2; C does not. 

Subcomponent 2 fails. Users A and B receive 
an error message. PinPoint notices 
and deduces that subcomponent 2 
is most likely to be at fault from 
the fact that both A and B are 
using it. 

2Subcomponent 2 fails. Users A and B 
receive an error message. The human 
operator cannot determine which 
component is at fault.

Because the faulty subcomponent 
cannot be located, the operator must 
reboot the entire system. 

2

3

All the subcomponents had to be rebooted, 
so the system takes a long time to recover.

4

All the software subcomponents in the 
Internet service are working correctly. 1

Micro-Reboot consults its own database and
learns that when subcomponent 2
fails, 1 is usually also affected.
It decides to reboot
both. User C  is 
not affected.

3 Pin-Point
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to function more quickly.
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cro-rebooting just the necessary subcom-
ponents takes less than a second. Instead
of seeing an error message, a user would
experience a three-second delay followed
by resumption of normal service.

Pinpointing Problems
IT’S ONE THING to fix known or like-
ly errors, but a related challenge is to find
the unanticipated ones. System operators
could use assistance in tracking down
problems more quickly, the second of our
ROC principles.

When building a traditional high-de-
pendability computer system, program-
mers start with a complete description of
all hardware and software elements. They
then follow with a carefully constructed
failure-analysis tree, which traces the myr-
iad ways the system can break down—so
that those may be prevented or, if they do
occur, corrected. In contrast to single-
source systems, Internet services are het-
erogeneous, using components from mul-
tiple vendors. Further, these modules of-
ten change rapidly as the service evolves.
Failures frequently arise from unexpect-
ed interactions between components,
rather than resulting from a bug in a sin-
gle piece of software. When this kind of
dynamic fault occurs, a Web user who
happened to be accessing the service at the
time may receive an error message.

To help analyze these complex mal-
functions, graduate students Emre Kici-
man and Eugene Fratkin of Stanford and
Mike Chen of Berkeley created PinPoint,
a ROC-based computer program that at-
tempts to determine which components
are at fault. Every time someone surfs to
a PinPoint-enabled Web site, the program
traces which software components par-
ticipated in delivering service to that user.
When a particular access request fails—

for example, the user gets an error mes-
sage from the site—PinPoint notes this
fact. Over time, the monitoring applica-
tion analyzes the mix of components that

were activated in both failed and success-
ful requests, using standard data-mining
techniques. By doing this, PinPoint can
find out which components are suspected
of causing most of the failures. The addi-
tional information gathered by the failure-
analysis code slows the system down by
at most 10 percent. Unlike the tradition-
al solution—which requires elaborate pre-
planning every time the software suite
changes—PinPoint works with any com-
bination of software components.

Wiping Away Errors
PERHAPS THE GREATEST challenge in
boosting system reliability is ensuring a
margin of safety against random errors
input by the operator; this rationale un-
derlies our third ROC principle, which
concerns the undo command. The first
word processors did not have this capa-
bility, which made them frustrating, if not
terrifying, to use. A single erroneous glob-
al substitution could destroy an entire file.
The undo function—which affords users
the ability to cancel any command—re-
moved the anxiety from word processing.

Operators of today’s large computing
systems have no such option. When the
foundations of information technology
were laid, no one considered it important
to be able to expunge mistakes. That’s be-

cause an undo function requires more
work to construct, consumes a significant
amount of storage space and probably
slows systems down somewhat.

To demonstrate a better approach,
our group is working on an undo capa-
bility for e-mail systems that is aimed at
the place where messages are stored.
Berkeley graduate student Aaron Brown
and one of us (Patterson) have recently
completed the prototype of an e-mail sys-
tem featuring an operator undo utility. We
are testing it now [see box on page 61].

Suppose a conventional e-mail storage
server gets infected by a virus. The system
operator must disinfect the server, a la-
borious job. Our system, however, would
record all the server’s activities automat-
ically, including discarded messages. If the
system gets infected, the operator could
employ the undo command to “turn back
the clock” to before the arrival of the
virus. Software that attacks that virus
could then be downloaded. Finally, the
operator could “play forward” all the e-
mail messages created after the infection,
returning the system to normal operation.
The newly installed antivirus software
would filter all subsequent e-mail traffic.
In this way, the operator could undo the
damage without losing important mes-
sages. To prevent potential confusion
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Computers may end up 10,000 TIMES FASTER
yet no more dependable than today’s machines.



among users—who may notice that some
e-mails have been eradicated—the system
could send a message saying that notes
were deleted during an attempt to stop
the spread of a virus.

Injecting Test Errors
LAST AMONG OUR ROC principles is
the idea of harnessing errors to do good:
we advocate testing the system periodical-
ly by inserting artificial faults. This prac-
tice would aid in evaluating the recovery
performance of a system and also in com-
ing up with new methods to make it more
robust. In an industry analogy, designers
of microprocessor chips have regularly
added circuits to simplify the testing of
chips, even though these additions in-
crease chip size and remain unused after
the microprocessors leave the factory.
Manufacturers consider these test circuits
worth the effort; they lower the cost of en-
suring that the completed chips work as
planned. Part of this benefit arises because
the test circuits allow designers to inject
“failures” artificially to verify that the chip
detects and recovers from them correctly.

Our group proposes a software equiv-
alent for computer systems. When opera-
tors employ the selective-rebooting strat-
egy, for example, test errors would help
determine which software components to
reboot to counter a particular kind of fail-
ure. If the problem propagated to only
one or two other elements, operators
could reboot only those. If the flaw came
to involve a great many components, it
might be more sensible to reboot the en-
tire system. We have started using error
injection to characterize the fault-propa-
gation behavior of Internet sites built us-
ing Java 2 Enterprise Edition.

Another version of this software
could permit potential buyers to see how
a computer system handled failures—a
benchmark program that could inform
their purchase decisions. Developed by
Berkeley graduate students Pete Broad-
well, Naveen Sastry and Jonathan Traup-
man, the Fig application tests the ability
of programs to cope correctly with un-
expected errors in the standard C library,
a part of the operating system used by
nearly all software programs. Fig stands
for Fault Injection in glibc (a version of
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STRIVING FOR RELIABLITY
COMPUTER SYSTEMS and their “organs”—microprocessors, applications and
communications networks—are becoming ever more powerful. But they are also
becoming ever more complex and therefore more susceptible to failure. As the costs of
administration, oversight and downtime expand in response, scientists and engineers
in the computer industry are working to enhance the dependability and reliability of
their products. Significantly, many of their efforts aim to take humans (and the errors
they inevitably engender) out of the loop. 

Concerned about security holes, bugs and other weaknesses in its present
product line, Microsoft’s management took the unusual step recently of halting
software development for an entire month to focus on what it calls Trustworthy
Computing. This issue of dependability has grown in importance as more
administrators adopt the company’s Windows operating system to run Web servers.
Operating-system developers at Microsoft attended classes to learn techniques that
improve security and reliability for desktop systems and are now refining Windows for
the next version, called Palladium. Engineers plan to cull potential weak points from
current products while developing new features that boost defenses against hackers. 

Little research exists on ways to reduce the lifetime cost of
computer ownership—the price individuals and companies pay for
running their systems. Programmers at Hewlett-Packard
Laboratories and IBM Research are working to cut those
expenses by adding new capabilities
or developing products that can
manage themselves. Hewlett-Packard
officials envision a globally networked
system of computational and storage
resources that monitor, heal and
adapt themselves without operator
intervention. HP’s Planetary
Computing project concentrates on
developing corporate data centers
that could contain as many as 50,000 individual office computers, a collection 10
times as large as today’s counterparts. 

IBM’s scheme borrows ideas from control theory—the use of feedback to stabilize
closed-loop systems and artificial intelligence—mimicking or otherwise capturing
expert human skills or intelligence to solve complex problems. These concepts will
help to create data centers that can diagnose problems on their own, adjust their
configurations to match changes in demand, repair themselves and defend against
hacker attacks. Drawing an analogy with the body’s autonomic nervous system, IBM
management calls this goal Autonomic Computing. 

When designers of other engineering systems have discovered a propensity for
operator error, they often have attempted to remove the need for human input.
Removing human operators can lead to a well-established pitfall known as the
Automation Irony. Because designers can typically reduce but not eliminate the need
for human intervention, such efforts frequently make things worse. That’s because
engineers generally automate the tasks that are easy, leaving the hard jobs for
people. These measures mean that administrators must carry out difficult tasks
intermittently on unfamiliar systems—a sure recipe for failure.

Will the path toward truly dependable computing be additional automation,
leading to hands-off computing, or will it be streamlined design combined with tools
that dramatically improve the effectiveness and productivity of human operators?
Only time will tell. —A.F. and D.P.



the standard C library used by numerous
programmers).

Error injection would also permit
computer programmers to test their re-
pair mechanisms, which is difficult to do.
Fig would allow operators to try their
hands at diagnosing and repairing fail-
ures, perhaps on a small experimental sys-
tem if not on the real thing. The program
has been used several times and is avail-
able for no charge on our ROC Web site
[see More to Explore below].

Benchmarking Recovery
THE HISTORY OF the computer indus-
try makes us strong believers in the im-
portance of measuring technical progress
and publicizing it. When computer firms
finally adopted standard benchmarking
programs to compare performance (after
many years of delay), customers could at
last see the relative merits of each prod-
uct clearly. Companies that trailed in
technology were forced to spend more on
engineering and subsequently could
gauge the effect of their innovations us-
ing standard test metrics. The resulting
test data led to a cascade of performance
improvements.

By focusing on evaluating recovery
time, Berkeley graduate students Brown
and David Oppenheimer, together with
one of us (Patterson), are working to re-
create that kind of competition for com-
puter system dependability. Products that
are shown to come back from crashes
quickest would win greater sales. We en-
vision a test suite that would incorporate
failures common in real systems, includ-
ing everyday errors caused by humans,
software and hardware. Prospective buy-
ers could insert these faults into systems
and then monitor the time to recovery. It
is ironic that current computer marketing
efforts more typically quote availability

(system downtime) metrics, which are
much more difficult to measure than re-
covery time.

When scientists and engineers focus
their efforts, they can achieve amazing
progress in a relatively short time. The me-
teoric, 30-year rise of both computer per-
formance and cost-effectiveness proves it.
If the industry continues traveling blindly
down the current path, computers in 2023
may end up another 10,000 times faster
yet no more dependable than today’s ma-
chines. But with dependability-enhancing
software tools and benchmarks to inspire
us, computing may one day become as re-
liable as users expect it to be. 
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M O R E  T O  E X P L O R E

              SPRING FORWARD The operator 
now instructs the Undo module to 
"redo" the "undone" actions, causing 
all  messages to be re-delivered to 
the e-mail server. This time, 
however, the new virus filter 
intercepts and deletes the infected 
message. The intended recipient of 
the e-mail receives notice.

3

Undo!

Redo!
"An infected email

message was deleted

to protect you from

a virus"

 UndoModule

E-mail
server

E-mail
server

 UndoModule

              MARKING TIME An e-mail 
user sends out a virus-laden 
message to a friend. The human 
operator of the e-mail system 
cannot protect the server from 
an undetected virus. However, 
because the "Undo" module 
monitors and logs all messages 
traveling in and out (including 
the infected one), it can fix these 
kinds of problems once they 
become apparent. 

1

            FALL BACK  The operator hears that a 
new virus is circulating and suspects that the 
server may be infected. Fortunately, the 
infected message has not yet been 
forwarded to its intended recipient. The 
operator tells the Undo module to use its 
Undo/Redo log data to "undeliver" all 
messages that arrived since the virus 
appeared. The operator installs a virus filter.

2

INFECTED SENDER VIRUS

 UndoModule

INTENDED MESSAGE RECIPIENTHUMAN OPERATOR

E-mail
server

VIRUS FILTER

Undo/RedoLogs

Undo/RedoLogs

Undo/RedoLogs

TURNING THE CLOCK BACK ON PROBLEMS


